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I. BACKGROUND, OBJECTIVES AND DELIVERABLES OF THE TASK ORDER 

In previous Mini-Sentinel workgroups1,2, statistical methods were developed, evaluated, and applied to 
sequentially monitor rare event outcomes that occur acutely following medical product exposure with 
adjustment for confounders. None of these approaches were explicitly designed for sequential testing 
with survival-type data. For example, the PRISM Year 2 workgroup developed and evaluated a causal 
method using inverse probability treatment weighting (IPTW) for vaccine safety evaluations in a 
distributed setting (PRISM Year 2: “Enhancing current sequential analytic techniques to improve causal 
inference”1). This method can be applied for a single point-in-time analysis or in a sequential monitoring 
framework. However, this approach was developed for a one-time (i.e., vaccine) exposure and for 
events that occur shortly following exposure (e.g., seizure within 1-42 days). Extending these methods to 
allow for chronically used exposures (e.g., drugs) and events that may occur further in time from the 
initiation of drug use (e.g., acute myocardial infarction) is critical and requires survival techniques.  
 
This workgroup was tasked to first review the statistical and epidemiology literature on methods for 
survival outcomes that incorporate adjustment for confounders using a causal inference approach. The 
workgroup then assessed the methods applicability to Mini-Sentinel and made recommendations on 
which strategies were best suited for use within this setting, where rare events, a distributed data 
environment, and sequential testing introduce new complications. Both design-based (e.g., matching, 
stratification) and analysis-based (e.g., inverse probability weighting) confounder adjustment 
approaches were to be considered since each of these approaches has different strengths and 
weaknesses. To focus the workgroup and to avoid overlap with ongoing work in Mini-Sentinel using 
design based approaches through matching, we concentrated our review on approaches using Cox’s 
Proportional Hazards (PH) models3 with direct adjustment for confounders. We focused on methods 
that would be viable in the distributed data setting (e.g. individual-level data remains at the healthcare 
site behind firewalls and only de-identified data is shared across sites). Barriers to effective data sharing, 
such as privacy concerns and proprietary information policies, make pooling of individual-level data 
across sites rarely used unless deemed critical to the question of interest. 
 
The second aim of the task order was to develop new approaches tailored to the Mini-Sentinel setting. 
From our literature review we decided to compare methods that aggregate data (Section II.C.1) as a 
form of de-identification or conduct site-specific Cox’s PH regression models and share summary 
statistics across sites (Section II.C.2). These methods have not been evaluated in the rare event setting 
of Sentinel and would be classified as new statistical approaches. We further extended the methods to 
sequential monitoring using different boundary formations (Section II.D).  
 
The third aim of the task order was to evaluate via simulation the most promising existing approaches 
and new approaches tailored to the Mini-Sentinel setting. To this end we conducted a formal statistical 
evaluation comparing the new approaches with the gold standard approaches if we did not have the 
distributed data setting (Section III). We also compared different sequential monitoring boundary 
approaches. Specifically, we assessed when exact testing methods were needed instead of simpler 
boundaries based on normal approximation methods, the assumptions for which may not hold in the 
rare event setting.  
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The simulation evaluation and methods development was extensive in this task order. It was an iterative 
process in which we would propose a new method and assess the performance via simulation, and then 
improve on the new method for problems observed from the simulation study. Due to the time 
consuming nature of the simulation study and methods development, we were not able to apply the 
new methods to an existing Mini-Sentinel example (Aim 4). Further, because we were developing new 
methods we did not actually have an existing Mini-Sentinel dataset that had the information necessary 
to apply the methods. This task order was not designed or funded to conduct a new data pull. We have 
instead outlined the type of data and structure that would be required to conduct the methods assessed 
in this task order. Further, as our final deliverable, we have created R code that can be used on a dataset 
with the structure we have outlined.   

II. STATISTICAL METHODS 

For this task order we will propose and evaluate several group sequential methods assuming Cox's PH 
regression models. We will first present several methods for a one time analysis tailored to the 
distributed data setting and rare event setting. We will then discuss two standard approaches to 
incorporate group sequential monitoring. 

A. STANDARD SURVIVAL METHODS IN THE NON-DISTRIBUTED DATA SETTING 

We will present standard survival regression methods that are typically applied to datasets in which 
individual level data could be shared across sites without concerns about patient privacy or concerns 
that the data are proprietary. These gold standard methods will then be compared to methods that 
account for the distributed data setting of Mini-Sentinel and assess if there is any strong evidence of loss 
of information or bias. 

1. Standard Cox PH regression 

Assume for at the end of the study follow-up period at site s (s = 1, … , S), we observe data from 
participant i (i= 1,… , 𝑛𝑠) that has either received the exposure of interest, 𝑋𝑠𝑖 = 1, or the comparator, 
𝑋𝑠𝑖 = 0. Furthermore, each person has a set of baseline confounders, 𝒁𝑠𝑖, 𝛿𝑠𝑖  indicating whether they 
have experienced the outcome before the end of the study follow-up period and 0 otherwise and 𝑇𝑠𝑖 for 
time to event or censoring. 
 
Consider a Cox's PH regression model for a single site, 
 
 𝜆(𝑇𝑠𝑖, 𝛿𝑠𝑖|𝑋𝑠𝑖, 𝒁𝑠𝑖) = 𝜆0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑋𝑠𝑋𝑠𝑖 + 𝜷𝑧𝑠𝒁𝑠𝑖],     (1) 
 
where 𝜆0(∙) is an unspecified baseline hazard function, 𝛽𝑋𝑠 is the site-specific log(HR) comparing the 
exposure of interest to the comparator, and 𝜷𝑧𝑠  is a 1 𝑥 𝑝 vector of unknown regression parameters for 
site s. 
 
Now extend this model to the standard centralized analysis setting in which data is collected across sites 
and analysis is done in a centralized location. The standard approach would now be to add a set of site 
indicator variables, 𝑺𝑠𝑖, and directly adjust for them in the regression model. Specifically, we would fit 
the following model: 
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 𝜆(𝑇𝑠𝑖, 𝛿𝑠𝑖|𝑋𝑠𝑖, 𝒁𝑠𝑖, 𝑺𝑠𝑖) = 𝜆0(𝑇𝑠𝑖)𝑒𝑥𝑝�𝛽𝑋 𝑋𝑠𝑖 + 𝜷𝑧 𝒁𝑠𝑖 + 𝜷𝑆 𝑺𝑠𝑖�.   (2) 
 
We would estimate the regression model using standard partial maximum likelihood estimation to 
derive the fitted estimates 𝛽̂𝑥 , 𝜷�𝑧 , and 𝜷�𝑆 . 
 
For a given analysis time we would be interested in assessing the following hypothesis: 𝐻𝑂:𝛽𝑋 = 0 
versus 𝐻𝐴:𝛽𝑋 > 0. To assess this hypothesis we would derive a test statistic. One standard test statistic 

is the Wald test statistic, 𝛽̂𝑋 �𝑉��𝛽̂𝑋�� . However, it is more common to form a score test statistic (a.k.a. 

Log Rank Statistic) since it is relatively more powerful, while still being straightforward to calculate. The 
corresponding Log Rank test statistic is: 
 
𝐿𝑅(𝑎)

=  

∑ �𝑋𝑠𝑖 −
∑ 𝑋𝑘𝑙exp �𝜷�𝑧

(0)𝒁𝑘𝑙 + 𝜷�𝑆
(0)𝑺𝑘𝑙�{𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}

∑ exp �𝜷�𝑧
(0)𝒁𝑘𝑙 + 𝜷�𝑆

(0)𝑺𝑘𝑙�{𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}
�{𝑠,𝑖:𝛿𝑠𝑖=1}

�∑ �
∑ 𝑋𝑘𝑙exp �𝜷�𝑧

(0)𝒁𝑘𝑙 + 𝜷�𝑆
(0)𝑺𝑘𝑙�{𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}

∑ exp �𝜷�𝑧
(0)𝒁𝑘𝑙 + 𝜷�𝑆

(0)𝑺𝑘𝑙�{𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}
− �

∑ 𝑋𝑘𝑙exp �𝜷�𝑧
(0)𝒁𝑘𝑙 + 𝜷�𝑆

(0)𝑺𝑘𝑙�{𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}

∑ exp �𝜷�𝑧
(0)𝒁𝑘𝑙 + 𝜷�𝑆

(0)𝑺𝑘𝑙�{𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}
�

2

�{𝑠,𝑖:𝛿𝑠𝑖=1}

 

 
where 𝜷�𝑧

(0)and 𝜷�𝑆
(0)are the fitted parameter estimates of model (2) under 𝐻𝑂 that 𝛽𝑋 = 0. Large 

positive values of LR(a) signify that the exposure of interest has a higher hazard ratio compared to a 
comparator. 
 
This standard regression approach can be directly used when individual level data is available. However, 
it may be necessary when conducting multi-site analyses, or desirable for patient privacy reasons, to 
limit the amount of information transferred across sites. In Section B we will discuss potential 
alternatives to limiting data and still conducting appropriate regression analyses that will perform well 
even in the rare event setting. 

2. Site-Stratified Cox PH regression 

Instead of adjusting for site in the mean model as outlined in model (2) in Section II.A.1, another 
common method to account for confounding by site is to use a site-stratified Cox PH regression model 
(see model (3)). The site-stratified cox model makes a proportional hazard assumption in each site but 
allows for different baseline hazards between sites. In addition, this model allows for between site 
heterogeneity  of the confounding estimates. This approach better accounts for differences across sites 
compared with adjusting directly for site and therefore, reduces potential bias if there are different 
relationships between those that receive the exposure versus comparator. The disadvantage of this 
approach is there may be some loss of power/efficiency relative to adjusting for site in the situation 
without site heterogeneity. In the simulation study in Section III, we will assess whether this loss of 
power/efficiency occurs in the rare event setting. The specific form of the Cox PH regression model is, 
 
  
 𝜆(𝑇𝑠𝑖, 𝛿𝑠𝑖|𝑋𝑠𝑖, 𝒁𝑠𝑖) = 𝜆𝑠0(𝑇𝑠𝑖)𝑒𝑥𝑝 �𝛽𝑥

(𝑆𝑡𝑟𝑎𝑡)𝑋𝑠𝑖 + 𝜷𝑧
(𝑆𝑡𝑟𝑎𝑡)𝒁𝑠𝑖�, for s=1,…,S. (3) 
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In Section II.B.2 we will propose a site-stratified approach tailored to the distributed data setting. In the 
simulation study we will compare the standard site-stratified Cox PH model to the new distributed data 
setting method. 

B. EXTENSIONS TO THE DISTRIBUTED DATA SETTING 

There are several approaches to extend Cox PH regression methods to the distributed data setting. We 
will first discuss a method for de-identifying individual level data that uses standard Cox PH regression. 
Then we will discuss how to instead conduct Mantel-Haenszel4 type test statistics using site-specific 
regression models that may be more appropriate when site heterogeneity is expected. 

1. Standard Cox PH regression with de-indentified data 

Assume that one can deidentify data by categorizing all confounders and time. Then, de-identified, 
categorized and data are shared from different sites to fit models described in previous section. 
Specifically, we will categorize continuous confounders (e.g., age is categorized to age1=35-39, age2=40-
44, ...). We can do something similar with time, but the statistical implications may be more 
complicated. We will propose initially to discretize time into categories such as week. Implications of the 
categorization of time will be both outcome ties and interval censoring. We account for outcome ties in 
estimating 𝛽𝑋 using Effron's method. Due to the rare event setting, we expect very few outcomes, so 
the implications of ties may be limited. For more common event settings, we would not advise to 
categorize time since having more ties increases estimate variability. For simplicity, we will initially also 
ignore implications of interval censoring unless we face problems in reserving statistical properties such 
as type I error and bias. We expect not taking interval censoring into account may lead to issues with 
variance estimation (type I error inflation), but fewer issues with bias. 

2. Mantel-Haenszel type test statistic in distributed data setting 

To limit data transmission, an alternative to categorizing all confounders and time is for each site to run 
a site-specific model and to transmit centrally only summary statistics. Specifically, one could fit the site-
specific Cox Regression model (1) at each analysis time a. From this model one can summarize the 
findings from site s using either the adjusted log hazard ratio, 𝛽̂𝑋𝑠, or site specific log rank test statistic, 
𝐿𝑅� . To create a single stratified estimate across sites, apply standard stratified or meta-analysis 
estimation of the form, 
 

 𝜃� = ∑ 𝑤𝑠𝜃�𝑠𝑆
𝑠=1
∑ 𝑤𝑠
𝑆
𝑠=1

         (4) 

 
where 𝑤𝑠 is either sample size at site s up to analysis a or the reciprocal of the variance of 𝜃�𝑠 and 𝜃�𝑠 is 
the test statistic of interest (e.g. 𝐿𝑅�𝑠). The estimated variance of 𝜃� is 
 

 𝑉��𝜃�� = ∑ 𝑤𝑠
2𝑆

𝑠=1 𝑉��𝜃�𝑠�

�∑ 𝑤𝑠
𝑆
𝑠=1 �

2 . 

 
Note that when the test statistic is the LR, then the 𝑉��𝐿𝑅�𝑠� = 1. The advantage of using stratified 
estimation is that it handles effect modification due to site. Sites often have different prescribing and 
coding patterns and therefore differential site effects are highly likely. The disadvantage is that site-
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specific regression models are less statistically efficient and less stable, especially in the rare event 
setting. We will explore the loss of power in the rare event setting in the simulations (Section III). Note 
that there are other methods available to combine the estimates across sites, such as random effects. 
For estimation purposes and computational simplicity to develop exact boundaries as described in 
Section II.C.2, we used this fixed effect approach to combine information. 

C. EXTENDING TO THE GROUP SEQUENTIAL TESTING SETTING 

We will now discuss how to incorporate active surveillance in which we will sequentially monitor over 
time for association of exposure with elevated risk of a given outcome. We will first present a method 
that develops boundaries assuming normal approximation theory and then discuss a method more 
tailored to rare outcomes. 

1. Group Sequential Cox’s PH using Lan Demets Normal Approximation Boundary Approach 

The normal approximation boundary approach computes group sequential boundaries on the error 
spending scale originally developed by Lan and Demets5 for randomized clinical trials. Error spending 
uses the concept of cumulative alpha or type I error, α(a), defined as the cumulative amount of type I 
error spent up to analysis a (a = 1,…, A). We assume that 0 < α(1) ≤ ⋯ ≤ α(A) = α, where α is the 
overall type I error specified to be spent across the study period. There are several commonly used 
models for α(a) including the Pocock boundary function6 α(a) = log (1 + (exp(1) − 1) 𝑛𝑎 𝑛𝐴)𝛼⁄ , 

O'Brien-Fleming boundary function7 α(a) = 2�1 − 𝜑� 𝑍1−𝛼

�𝑛𝑎 𝑛𝐴�
��, and the general power boundary 

function α(a) = �𝑛𝑎 𝑛𝐴� �
𝑝
𝛼 p > 0. For safety evaluations a flat, Pocock-like boundary on a standardized 

test statistic scale has often been used.8 
 
Given a specified error spending function, Lan and Demets5 developed a conditional sequential 
monitoring boundary, referred to here as GS LD, for any asymptotically normal standardized test 
statistic, 𝑊𝐿𝐷(𝑎)~𝑁(0,1) as 𝑛𝑎 → ∞, based on independent increments of data. This boundary can be 
computed and used to compare to any standardized test statistic that is asymptotically normal, 
including one that controls for confounding. For this task order we will use the Log Rank test statistic 
and Mantel-Haenzel stratified test statistics as outlined in previous sections. 
 
Error-spending is an appealing approach because the boundary is very simple to calculate and relies on a 
well-defined asymptotic distribution. However, in practice with rare events and frequent testing (which 
produces small amounts of new information between analyses) the asymptotic properties of the 
boundary may fail to hold. The following section will describe a more recent method to address the 
shortcomings of this approach for the rare event setting. 

2. Group Sequential Cox’s PH using Exact Boundary Calculations 

We will now describe a method that is an extension of the Group Sequential GEE method9 using a Cox's 
PH model adjusting for confounders with a Log Rank test statistic. For our boundary formulation we will 
modify a well-established simulation approach initially proposed by Wang and Tsiatis10 and extended in 
the context of an unifying family of boundaries by Kittelson and Emerson.11 This approach allows for the 
application of a wide range of commonly used boundary shapes including the Pocock-like boundary6 and 

Statistical Methods Development - 5 - Survival Methods Development 



 
  
 
 
 
the O'Brien and Fleming-like boundary.7 Specifically, the boundary is defined as 𝑏(𝑎) = 𝜔𝑢(𝑎) where 
𝑢(𝑎) is specified as a function dependent on a and comes from the unifying boundary family (specifically 
for Pocock-like 𝑢(𝑎) = 1 and O'Brien and Fleming-like 𝑢(𝑎) = �𝑛𝐴/𝑛𝑎 and 𝜔 is solved iteratively by 
permuting the data under 𝐻𝑂 to hold the type I error at α. 
 
To form a boundary it is necessary to define a test statistic, the variability of the test statistic over time, 
the shape of the boundary, the number of analysis times, α-level (type I error), and either end of study 
sample size or overall power. We first assume that the end of study sample size with number of 
observations per analysis time is known, and we allow power to vary. For observational studies to 
determine the variability of the test statistic over time, one must also assume the distribution at each 
analysis time of all variables in the model including outcome, exposure and all confounders. We then 
discuss how to alter this boundary selection process to incorporate earlier non-pre-specified analysis 
times, variable number of observations 𝑛𝑎 per analysis time, and unknown future distributions of the 
outcome, exposure, and confounders. 
 
To accommodate rare events, we propose to use a permutation approach for boundary formation which 
has advantageous non-parametric assumptions. Under the null that 𝛽𝑋(𝑎) = 0 for all a, outcome given 
confounders, 𝑇𝑠𝑖(𝑎), 𝛿𝑠𝑖(𝑎)|𝒁𝑠𝑖, is independent of exposure 𝑋𝑠𝑖. Note that now we define , 𝑇𝑠𝑖(𝑎), as 
the time to event or censoring where censoring occurs at analysis time a instead of end of the entire 
study period.  Similarly the event, 𝛿𝑠𝑖(𝑎), must occur before the end of analysis time a. Therefore, we 
can permute observed exposures, 𝑿𝑠, within site s while fixing the observed set of outcomes and 
confounders (𝑻𝑠, 𝛿𝑠, 𝒁𝑠). Since we are analyzing data at times a = 1, … , A, and in practice the variability 
in the proportion exposed may directly affect the variability of the test statistic, it is important to 
permute X within analysis time a. To do this, we assume that the data are ordered by time of entry into 
study such that for analysis at time a the new data observed at analysis time a since a-1 is indexed by 
�𝑛𝑠,𝑎−1 + 1� to �𝑛𝑠,𝑎�and for the first analysis time has index {1} to �𝑛𝑠,1�. Given this ordering of the 
data the permutation approach proceeds as follows: 
 
Permutation Data Approach (at end of study): 
Step 1: Within each analysis time a and site s create permuted exposure data 𝑿𝑠

(𝑗) (𝑗 = 1, … , 𝑁𝑝), by 

permuting observed exposures, (𝑋𝑛𝑠,𝑎−1+1, … , 𝑋𝑛𝑠,𝑎), to form 𝑿𝑠
(𝑗) = �𝑋𝑛𝑠,𝑎−1+1

(𝑗) , … , 𝑋𝑛𝑠,𝑎
(𝑗) �.  

 
Step 2a (De-identified Cox PH analysis): Calculate the permuted test statistic 𝜃(𝑗)(𝑎) = 𝐿𝑅(𝑗)(𝑎) on the 

permuted exposure data, 𝑿𝑠
(𝑗), and observed outcome and confounder data. 

 
Step 2b (Mantel-Haenszel analysis): Calculate the site-specific test statistic 𝜃𝑠

(𝑗)(𝑎) (e.g. 𝜃𝑠
(𝑗)(𝑎) = 

𝐿𝑅𝑠(𝑎)) on the sites permuted exposure data and observed outcome and confounder data. 
Then centrally combine the site specific test statistics to form a stratified test statistic 

𝜃(𝑗)(𝑎) = ∑ 𝑤𝑠𝜃𝑠
(𝑗)(𝑎)𝑆

𝑠=1
∑ 𝑤𝑠
𝑆
𝑠=1

. 

 
Step 3: If 𝜃(𝑗)(𝑎) ≥ 𝜔 ∗ 𝑢(𝑎) then denote 𝐶𝑗 = 1 (e.g. permuted data j has crossed boundary) and stop, 

otherwise continue to next a + 1. 
 
If a = A then 𝐶𝑗 = 0 indicating permuted data set j did not signal. 
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This process is repeated a large number, 𝑁𝑝, times (j = 1, … , 𝑁𝑝). Then the estimated 𝛼-level for the 

boundary is calculated as 𝛼� = ∑ 𝐶𝑗
𝑁𝑝�𝑁𝑝

𝑗=1 . Repeat the simulation steps 1-2 until 𝛼� = 𝛼 by decreasing, or 

increasing, the value of 𝜔 in the boundary calculation 𝜔 ∗ 𝑢(𝑎). 
 
This simulation framework requires that we have a complete dataset, (𝑿𝑠, 𝑻𝑠, 𝛿𝑠, 𝒁𝑠), for all observations 
i = 1, … , 𝑛𝐴. However, this is not practical at earlier analysis times a < A. To solve this, at times a < A, we 
can instead make assumptions about how the data will look at future analysis times. Specifically, we will 
assume that future data will look like the current outcome, exposure, and confounder data. To 
approximate the future distributions of 𝑻, 𝛿, 𝒁, and 𝑿, we can sample the future observations, 𝑛𝑎+1 to 
𝑛𝐴, by sampling with replacement from the observed (𝑋𝑠𝑖, 𝑇𝑠𝑖, 𝛿𝑠𝑖, 𝒁𝑠) (i = 1, … , 𝑛𝑎). This will create the 
complete dataset necessary to perform the permutation approach described previously for all analysis 
times. Note that this is a conservative assumption since we will assume only new individuals are 
entering the population and not that for our current population we will observe more exposure 
information. Therefore we will likely have higher boundaries in earlier analyses then what will be 
necessary to preserve the overall type I error. We will eventually use this preserved alpha in future 
analyses as we observe more information and boundaries are updated. 
 
In practice, at each new analysis time, we keep the prior critical values c(1), … , c(a-1) since these were 
the signaling thresholds used at previous analysis times and each analysis is defined to be conditional on 
the prior analyses. Using these values, we will then solve for the current analysis time critical value c(a) 
using the newly updated observed information. These new data may have a different distribution of 
outcomes, exposures, and confounders compared to what we had assumed during previous analysis 
times, and the sample sizes may be different than initially planned. Thus it is important to note our 
method allows for both different than expected outcome, exposure, and confounder distributions along 
with sample size at a given analysis time. However, changes in the distribution affect the variability of 
the estimator and therefore the corresponding signaling threshold c(a), which is defined to maintain 
𝛼(𝐴) = 𝛼. Therefore, at each analysis time we will update the boundary to maintain the original 
boundary family, but moving it slightly compared to the initially planned threshold in order to keep the 
overall type I error constant as the variability of the data changes over time. 

III. SIMULATION STUDY 

The following simulation study was conducted to evaluate the operating characteristics of the new 
distributed methods compared to standard Cox PH models. The purpose of this simulation was to 
compare the gold standard methods in which individual-level data could be pooled across Data Partners 
to conduct either standard Cox PH models adjusting for site or site stratified Cox PH models, to the new 
distributed data methods that attempt to either de-identify data through aggregation or use stratified 
analysis approaches in which only summary data is shared across sites. It is important to understand the 
operating characteristics of proposed estimators in order to effectively evaluate quantities such as the 
false positive rate (type I error), study power, and the average time to detection of a true signal. 
 
Section III.A below details the different scenarios evaluated. In the simulation evaluations, we vary the 
two-year incidence of outcome in the unexposed portion of the population from 1% to 5%, the 
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proportion of exposed individuals in the study population from 10% to 50%, and the strength of age and 
site confounders. The total end of two-year sample size is fixed at 10,000 across simulations. All 
simulation results are based on 500 replicate datasets and were conducted using R version 3.0.2.  

A. DATA STRUCTURE 

Below is the specific step-wise simulation design for creating a dataset of N study participants for 
(i=1,…,N); 

1. Start date, Di, is the time at which individual i enters the study, and this is uniformly distributed 
throughout the two-year (720 day) study period, Di ~ Discrete Uniform(1,719);  

2. Site distribution, Si is three equal-sized sites. The variable Si is generated from the fixed 
distribution of equal-sized sites, and then the two corresponding binary (dummy) variables, Si1 
and Si2, are generated for use in regressions and calculations using design matrices. 

3. Confounder distributions : The simulations performed for this study included a single continuous 
confounder (age), Zi, which is distributed as Uniform(35,65) and then centered at 50 and scaled 
so that a one-unit change is equivalent to 10 years. For aggregated methods, Zi, is categorized 
into 5 binary (dummy) variables for 5-year age increments.  

4. Exposure distribution conditional on confounders: 
𝑙𝑜𝑔(𝑋𝑠𝑖|𝑍𝑠𝑖 , 𝑆1𝑠𝑖, 𝑆2𝑠𝑖) = exp (𝛽𝑥,0 + 𝛽𝑥,𝑧𝑍𝑠𝑖 + 𝛽𝑥,𝑠1𝑆1𝑠𝑖 + 𝛽𝑥,𝑠2𝑆2𝑠𝑖) 
where for each coefficient other than βx,0, exp(β) is the relative risk of exposure associated with a 
one unit change in that particular variable holding the other variables fixed. We varied the 
strength of the exposure/confounder association to be a relative risk of 1.3 and 1.5. For each 
simulation we solved for βx,0 so that the overall probability of X was fixed at either 50% or 10% 
across all simulation configurations.  

5. Overall outcome distribution conditional on exposure and confounders: To define the survival 
outcome, we needed to specify the censoring and time to event distributions.  

a. First, we specified that the censoring distribution is 𝐶𝑠𝑖~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(2,200) which is 
independent of covariates. This translates to an average censoring time of 177 days (SD 
93 days) and is depicted below in Figure 1. This would depict a medical product that is 
typically taken for a longer duration. 

 
Figure 1. Censoring Distribution of Weibull(2, 200). 
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b. Second, we specified the time-to-event distribution. For this simulation study, we 
assumed that: 

  𝐸𝑠𝑖~𝑒𝑥𝑝(𝛽𝑦,0 + 𝛽𝑦,𝑥𝑋𝑠𝑖 + 𝛽𝑦,𝑧𝑍𝑠𝑖 + 𝛽𝑦,𝑠1𝑆1𝑠𝑖 + 𝛽𝑦,𝑠2𝑆2𝑠𝑖)  
where for each coefficient other than βy,0, exp (𝛽𝑦,.), is the relative risk of the outcome 
associated with a one unit change in that particular variable holding the other variables 
fixed. We varied the strength of outcome and age relationship to be 1.3 and 1.5 and the 
relationship between outcome and sites to be (1.2, 1.2) and (1.2, 0.8). We varied the 
association between outcome and exposure of interest to be 1, 1.5, and 2. For each 
simulation we solved for βy,0 so that the overall probability of the outcome at the last 
analysis A, 𝛿𝑠𝑖(𝐴) = 𝐼(𝐸𝑠𝑖 < 𝐶𝑠𝑖 ∩ 𝐸𝑠𝑖 < 𝑡𝐴 − 𝐷𝑠𝑖), was fixed at either 1% or 5% across 
all simulation configurations. 

6. Sequential Monitoring Outcome Definition: At analysis a (a=1, …, A) occurring at time 𝑡𝑎, we use 
the subset of data with start date before analysis time (𝐷𝑠𝑖 < 𝑡𝑎). Given the time-to-event, 𝐸𝑠𝑖  , 
and censoring, 𝐶𝑠𝑖, distributions described previously across the entire study period, we define 
the outcomes and exposure duration at a given analysis time as: 

a. Individual-level data: 
i. Time to event or censoring at analysis time a: 𝑇𝑠𝑖(𝑎) = min (𝑡𝑎 − 𝐷𝑠𝑖, 𝐶𝑠𝑖, 𝐸𝑠𝑖) 

ii. Outcome indicator at analysis time a: 𝛿𝑠𝑖(𝑎) = 𝐼(𝐸𝑠𝑖 < 𝐶𝑠𝑖 ∩ 𝐸𝑠𝑖 < 𝑡𝑎 − 𝐷𝑠𝑖) 
b. De-identified time-aggregated data 

i. Time to event or censoring at analysis time a: 𝑇𝑠𝑖𝑐 (𝑎)is defined as categorizing 
𝑇𝑠𝑖(𝑎) into 7-day bins. 

ii. Outcome indicator at analysis time a: 𝛿𝑠𝑖𝑐 (𝑎) = 𝐼(𝐸𝑠𝑖 < 𝐶𝑠𝑖 ∩ 𝐸𝑠𝑖 < 𝑇𝑠𝑖𝑐 (𝑎)) 
7. Frequency of Testing and Boundary Shape: Through all simulations we assumed a two-year study 

with a 6 month lag and 6 quarterly looks thereafter. We used a Pocock or Pocock-like boundary 
throughout evaluations since this is what has been used most commonly in safety surveillance 
(add refs).  

B. RESULTS 

We first present the results for the scenario with the more common outcome incidence of 0.05. In this 
scenario, we expect the new distributed methods and standard Cox PH models to perform similarly, and 
we expect not to see issues with using the normal approximation Lan Demets boundary. The second set 
of simulations assesses the performance of the methods in the less common outcome incidence 
scenario of 0.01, in which performance was expected to have some issues for the distributed methods 
and for the normal approximation boundary formation. 

1. More Common Outcome Frequency of 0.05 

Table 1, Table 2, and Table 3 show the results for the more common outcome scenario using Lan 
Demets boundary formation. In Table 1, we evaluated whether the methods appropriately held the type 
I error if we simulated data with no association between the exposure and outcome of interest, when 
varying the strength of confounding and the prevalence of exposure.  If the method is performing 
appropriately, we would expect the type I error to be held at 0.05. As shown in Table 1, there is no 
strong indication that any of the methods are not holding the type I error in this more common outcome 
scenario and therefore all methods are valid.  
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In Table 2 and Table 3 we assess the performance of the methods when there is an association between 
the exposure and outcome of interest with RR=1.5. Table 2 evaluates power and Table 3 shows time to 
signal detection or end of study without a signal. As shown in Table 2, as exposure prevalence increases, 
power increases as expected. Looking across methods, there does not seem to be any indication that 
power decreases as we aggregate data (confounders, follow-up time, or both) or conduct stratified 
Mantel-Haenszel type estimates. Further, in Table 3 there is no indication of different time to study end 
across methods. Therefore, both methods for de-identified data proposed in this write-up perform well 
for the more common outcome case with few confounders. 

2. Rare Outcome Frequency of 0.01 

Table 4, Table 5, and Table 6 show the results for the less common outcome scenario using Lan Demets 
boundary formation. Table 4 shows the results for assessing type I error when there is no relationship 
between outcome and exposure of interest. Tables 5 and 6 show the results assessing study power and 
time to signal detection for an association between exposure and outcome with RR=2. In the scenario 
with 0.50 exposure prevalence (the bottom section of Table 4), type I error seems to be slightly lower 
than 0.05 across all strength of confounding scenarios, but there is no strong differences across methods 
(based on results across columns). In this high exposure prevalence scenario, there are no strong 
differences across methods in terms of power (Table 5, bottom half). However, when comparing time to 
study end (Table 6, bottom half) there is some indication that methods using non-site stratified 
estimates have slightly faster time to study end. Specifically, for the first row of the prevalence of 
exposure=0.50 section, the time to study end of the Cox method with individual-level continuous data is 
368 days compared to 391 using the site-stratified Cox method with individual-level continuous data. 
Aggregating, but without a stratified estimate, yields the same result (mean time to study end of 368) as 
the individual-level continuous estimate, and the stratified estimate on the aggregated data is 392 days 
to study end similar to the stratified Cox estimate. Mantel-Haenszel site stratified results are 
consistently in between the Cox site stratified and Cox with site adjustment results. Therefore, for this 
scenario, the Cox aggregated method for confounder adjustment may be preferable.     
 
Assessing the low exposure prevalence scenario of 0.10, there is an indication of large issues with type I 
error (Table 4, top half).  Type I error is consistently elevated especially for the Mantel-Haenszel type 
estimator, but is even high in the gold standard case using individual level data with continuous time 
and confounders. Therefore, this may indicate issues with using a normal approximation boundary 
formation in the rare outcome and rare exposure setting. 
 
We then conducted a brief simulation study using exact boundaries to see if the type I error was 
properly held for the rare outcome case in which the normal approximation boundary methods did not 
perform well.  Table 7 displays the type I error results from this evaluation showing that type I error is 
held much closer to 0.05 level, but in a few circumstances there is still elevated type I error for the new 
proposed distributed methods relative to standard Cox PH methods with continuous time and 
confounders.   However, as exposure prevalence becomes more common all methods had appropriate 
type I error when using exact boundaries and were closer to 0.05 compared to the normal 
approximation methods. Table 8 and Table 9 show power and time to study end using the exact 
methods and results show some slight power advantages using Aggregated time and confounders 
relative to Mantel Haenszel type estimate but the advantages are modest.
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Table 1. Type I error for two site confounders and age using Lan Demets Boundary Formation, for outcome frequency=0.05 and no association 
between exposure and outcome 

              
  

TYPE I ERROR 

RR (Y|X, Z, and Site)   RR (X|Z and Site) 
 

Continuous T 
Continuous Z   

Aggregate T 
Continuous Z   

Continuous T 
Aggregate Z   

Aggregate T 
Aggregate Z   Distributed 

X Z Site 1 Site 2   Z Site 1 Site 2 
 

Cox Strat. Cox   Cox   Cox   Cox Strat. Cox   MH Strat. 
Prevalence of Exposure 0.10 

              1 1.3 1.2 1.2 
 

1.2 2 2 
 

0.054 0.048 
 

0.054 
 

0.052 
 

0.054 0.056 
 

0.054 
1 1.3 1.2 0.8 

 
1.2 2 2 

 
0.058 0.060 

 
0.058 

 
0.062 

 
0.060 0.058 

 
0.066 

1 1.3 1.2 1.2 
 

1.5 2 2 
 

0.054 0.054 
 

0.052 
 

0.056 
 

0.056 0.054 
 

0.058 
1 1.3 1.2 0.8 

 
1.5 2 2 

 
0.050 0.062 

 
0.050 

 
0.052 

 
0.052 0.062 

 
0.058 

1 1.5 1.2 1.2 
 

1.2 2 2 
 

0.062 0.056 
 

0.058 
 

0.058 
 

0.058 0.052 
 

0.058 
1 1.5 1.2 0.8 

 
1.2 2 2 

 
0.052 0.054 

 
0.050 

 
0.050 

 
0.050 0.052 

 
0.052 

1 1.5 1.2 1.2 
 

1.5 2 2 
 

0.048 0.060 
 

0.048 
 

0.048 
 

0.048 0.062 
 

0.070 
1 1.5 1.2 0.8 

 
1.5 2 2 

 
0.052 0.056 

 
0.052 

 
0.052 

 
0.052 0.062 

 
0.058 

Prevalence of Exposure 0.50 
              1 1.3 1.2 1.2 

 
1.2 2 2 

 
0.054 0.056 

 
0.054 

 
0.056 

 
0.054 0.056 

 
0.056 

1 1.3 1.2 0.8 
 

1.2 2 2 
 

0.040 0.042 
 

0.040 
 

0.040 
 

0.038 0.042 
 

0.042 
1 1.3 1.2 1.2 

 
1.5 2 2 

 
0.042 0.042 

 
0.042 

 
0.038 

 
0.038 0.042 

 
0.042 

1 1.3 1.2 0.8 
 

1.5 2 2 
 

0.048 0.054 
 

0.044 
 

0.046 
 

0.046 0.054 
 

0.052 
1 1.5 1.2 1.2 

 
1.2 2 2 

 
0.048 0.050 

 
0.048 

 
0.050 

 
0.050 0.052 

 
0.052 

1 1.5 1.2 0.8 
 

1.2 2 2 
 

0.056 0.060 
 

0.056 
 

0.062 
 

0.060 0.058 
 

0.054 
1 1.5 1.2 1.2 

 
1.5 2 2 

 
0.024 0.028 

 
0.024 

 
0.024 

 
0.024 0.036 

 
0.030 

1 1.5 1.2 0.8   1.5 2 2   0.036 0.036   0.034   0.036   0.036 0.040   0.036 
*Bold indicates Type I error 0.05 +/- 0.02 

            Continuous T = Continuous Time (no aggregation), Continuous Z = Continuous Age (no 5 year age categorization), Aggregate T = De-identify data by 
creating one-week study time categories, Aggregate Z = Deidentify data by creating 5-year age categorization, Distributed = Only send summary statistics 
across sites instead of raw data, Cox = Cox PH not stratified by site, Strat. Cox = Cox PH stratified by site, and MH Strat. = Send separate site adjusted Cox 
PH model LR test statistics and variance to a central location and calculate a Mantel-Haenszel type estimate. 
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Table 2. Power for two site confounders and age using Lan Demets Boundary Formation, for outcome frequency=0.05 and RR=1.5 for 
association between exposure and outcome 

              
  

POWER 

RR (Y|X, Z, and Site)   RR (X|Z and Site) 
 

Continuous T 
Continuous Z   

Aggregate T 
Continuous Z   

Continuous T 
Aggregate Z   

Aggregate T 
Aggregate Z   Distributed 

X Z Site 1 Site 2   Z Site 1 Site 2 
 

Cox Strat. Cox   Cox   Cox   Cox Strat. Cox   MH Strat. 
Prevalence of Exposure 0.10 

              1.5 1.3 1.2 1.2 
 

1.2 2 2 
 

0.874 0.856   0.872   0.882   0.878 0.864   0.856 
1.5 1.3 1.2 0.8 

 
1.2 2 2 

 
0.860 0.874   0.858   0.866   0.868 0.874   0.866 

1.5 1.3 1.2 1.2 
 

1.5 2 2 
 

0.870 0.860   0.872   0.872   0.872 0.870   0.862 
1.5 1.3 1.2 0.8 

 
1.5 2 2 

 
0.870 0.870   0.870   0.872   0.872 0.882   0.866 

1.5 1.5 1.2 1.2 
 

1.2 2 2 
 

0.860 0.856   0.858   0.858   0.858 0.856   0.856 
1.5 1.5 1.2 0.8 

 
1.2 2 2 

 
0.876 0.878   0.872   0.878   0.876 0.878   0.882 

1.5 1.5 1.2 1.2 
 

1.5 2 2 
 

0.866 0.852   0.864   0.870   0.870 0.852   0.852 
1.5 1.5 1.2 0.8 

 
1.5 2 2 

 
0.894 0.884   0.894   0.900   0.900 0.892   0.892 

Prevalence of Exposure 0.50 
        

            
1.5 1.3 1.2 1.2 

 
1.2 2 2 

 
0.984 0.988   0.984   0.986   0.986 0.988   0.988 

1.5 1.3 1.2 0.8 
 

1.2 2 2 
 

0.994 0.994   0.994   0.994   0.994 0.994   0.994 
1.5 1.3 1.2 1.2 

 
1.5 2 2 

 
0.982 0.982   0.982   0.982   0.982 0.982   0.982 

1.5 1.3 1.2 0.8 
 

1.5 2 2 
 

0.992 0.992   0.992   0.994   0.994 0.992   0.988 
1.5 1.5 1.2 1.2 

 
1.2 2 2 

 
0.992 0.992   0.992   0.992   0.992 0.992   0.992 

1.5 1.5 1.2 0.8 
 

1.2 2 2 
 

0.998 0.998   0.998   0.998   0.998 0.998   0.998 
1.5 1.5 1.2 1.2 

 
1.5 2 2 

 
0.990 0.990   0.990   0.990   0.990 0.990   0.990 

1.5 1.5 1.2 0.8   1.5 2 2   0.990 0.990   0.990   0.992   0.992 0.992   0.990 
Continuous T = Continuous Time (no aggregation), Continuous Z = Continuous Age (no 5 year age categorization), Aggregate T = De-identify data by creating 
one-week study time categories, Aggregate Z = Deidentify data by creating 5-year age categorization, Distributed = Only send summary statistics across sites 
instead of raw data, Cox = Cox PH not stratified by site, Strat. Cox = Cox PH stratified by site, and MH Strat. = Send separate site adjusted Cox PH model LR 
test statistics and variance to a central location and calculate a Mantel Haenszel type estimate. 

 
 

Statistical Methods Development - 12 - Survival Methods Development 



 
  
 
 
 
Table 3. Time to Study End (in days) for two site confounders and age using Lan Demets Boundary Formation, for outcome frequency=0.05 
and RR=1.5 for association between exposure and outcome 

              
  

TIME TO STUDY END 

RR (Y|X, Z, and Site)   RR (X|Z and Site) 
 

Continuous T 
Continuous Z   

Aggregate T 
Continuous Z   

Continuous T 
Aggregate Z   

Aggregate T 
Aggregate Z   Distributed 

X Z Site 1 Site 2   Z Site 1 Site 2 
 

Cox Strat. Cox   Cox   Cox   Cox Strat. Cox   MH Strat. 
Prevalence of Exposure 0.10 

              1.5 1.3 1.2 1.2 
 

1.2 2 2 
 

380 382   381   379   382 384   382 
1.5 1.3 1.2 0.8 

 
1.2 2 2 

 
381 378   382   379   378 376   377 

1.5 1.3 1.2 1.2 
 

1.5 2 2 
 

384 388   385   383   383 385   387 
1.5 1.3 1.2 0.8 

 
1.5 2 2 

 
388 389   388   388   388 386   391 

1.5 1.5 1.2 1.2 
 

1.2 2 2 
 

386 382   388   388   389 382   379 
1.5 1.5 1.2 0.8 

 
1.2 2 2 

 
377 380   378   378   379 380   374 

1.5 1.5 1.2 1.2 
 

1.5 2 2 
 

394 398   395   392   393 397   398 
1.5 1.5 1.2 0.8 

 
1.5 2 2 

 
373 371   373   368   368 368   371 

Prevalence of Exposure 0.50 
        

            
1.5 1.3 1.2 1.2 

 
1.2 2 2 

 
289 285   289   288   289 285   284 

1.5 1.3 1.2 0.8 
 

1.2 2 2 
 

267 265   267   265   265 263   264 
1.5 1.3 1.2 1.2 

 
1.5 2 2 

 
280 277   280   278   279 275   277 

1.5 1.3 1.2 0.8 
 

1.5 2 2 
 

275 275   275   273   273 273   273 
1.5 1.5 1.2 1.2 

 
1.2 2 2 

 
269 268   269   269   269 268   268 

1.5 1.5 1.2 0.8 
 

1.2 2 2 
 

281 280   282   280   280 281   281 
1.5 1.5 1.2 1.2 

 
1.5 2 2 

 
289 285   289   286   287 284   285 

1.5 1.5 1.2 0.8   1.5 2 2   284 281   284   279   280 280   282 
Continuous T = Continuous Time (no aggregation), Continuous Z = Continuous Age (no 5 year age categorization), Aggregate T = De-identify data by creating 
one-week study time categories, Aggregate Z = Deidentify data by creating 5-year age categorization, Distributed = Only send summary statistics across sites 
instead of raw data, Cox = Cox PH not stratified by site, Strat. Cox = Cox PH stratified by site, and MH Strat. = Send separate site adjusted Cox PH model LR 
test statistics and variance to a central location and calculate a Mantel Haenszel type estimate. 
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Table 4. Type I error for two site confounders and age using Lan Demets Boundary Formation, for outcome frequency=0.01 and no association 
between exposure and outcome 

              
  

TYPE I ERROR 

RR (Y|X, Z, and Site)   RR (X|Z and Site) 
 

Continuous T 
Continuous Z   

Aggregate T 
Continuous Z   

Continuous T 
Aggregate Z   

Aggregate T 
Aggregate Z   Distributed 

X Z Site 1 Site 2   Z Site 1 Site 2 
 

Cox Strat. Cox   Cox   Cox   Cox Strat. Cox   MH Strat. 
Prevalence of Exposure 0.10 

              1 1.3 1.2 1.2 
 

1.2 2 2 
 

0.068 0.082   0.066   0.066   0.064 0.084   0.130 
1 1.3 1.2 0.8 

 
1.2 2 2 

 
0.090 0.084   0.090   0.092   0.092 0.084   0.148 

1 1.3 1.2 1.2 
 

1.5 2 2 
 

0.062 0.076   0.062   0.064   0.066 0.076   0.122 
1 1.3 1.2 0.8 

 
1.5 2 2 

 
0.092 0.088   0.092   0.090   0.092 0.090   0.140 

1 1.5 1.2 1.2 
 

1.2 2 2 
 

0.058 0.066   0.058   0.066   0.066 0.068   0.114 
1 1.5 1.2 0.8 

 
1.2 2 2 

 
0.088 0.114   0.090   0.088   0.088 0.112   0.142 

1 1.5 1.2 1.2 
 

1.5 2 2 
 

0.062 0.062   0.062   0.058   0.058 0.066   0.114 
1 1.5 1.2 0.8 

 
1.5 2 2 

 
0.074 0.078   0.074   0.084   0.082 0.082   0.126 

Prevalence of Exposure 0.50 
        

            
1 1.3 1.2 1.2 

 
1.2 2 2 

 
0.044 0.040   0.044   0.042   0.042 0.040   0.048 

1 1.3 1.2 0.8 
 

1.2 2 2 
 

0.038 0.032   0.038   0.040   0.042 0.038   0.034 
1 1.3 1.2 1.2 

 
1.5 2 2 

 
0.040 0.034   0.040   0.040   0.040 0.034   0.036 

1 1.3 1.2 0.8 
 

1.5 2 2 
 

0.032 0.028   0.032   0.030   0.030 0.028   0.034 
1 1.5 1.2 1.2 

 
1.2 2 2 

 
0.038 0.036   0.040   0.038   0.038 0.036   0.038 

1 1.5 1.2 0.8 
 

1.2 2 2 
 

0.036 0.028   0.036   0.038   0.036 0.028   0.026 
1 1.5 1.2 1.2 

 
1.5 2 2 

 
0.048 0.048   0.048   0.050   0.052 0.046   0.054 

1 1.5 1.2 0.8   1.5 2 2   0.040 0.042   0.038   0.038   0.038 0.040   0.054 
*Bold indicates Type I error 0.05 +/- 0.02 

            Continuous T = Continuous Time (no aggregation), Continuous Z = Continuous Age (no 5 year age categorization), Aggregate T = De-identify data by creating 
one-week study time categories, Aggregate Z = Deidentify data by creating 5-year age categorization, Distributed = Only send summary statistics across sites 
instead of raw data, Cox = Cox PH not stratified by site, Strat. Cox = Cox PH stratified by site, and MH Strat. = Send separate site adjusted Cox PH model LR 
test statistics and variance to a central location and calculate a Mantel Haenszel type estimate. 
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Table 5. Power for two site confounders and age using Lan Demets Boundary Formation, for outcome frequency=0.01 and RR=2 for 
association between exposure and outcome 

              
  

POWER 

RR (Y|X, Z, and Site)   RR (X|Z and Site) 
 

Continuous T 
Continuous Z   

Aggregate T 
Continuous Z   

Continuous T 
Aggregate Z   

Aggregate T 
Aggregate Z   Distributed 

X Z Site 1 Site 2   Z Site 1 Site 2 
 

Cox Strat. Cox   Cox   Cox   Cox Strat. Cox   MH Strat. 
Prevalence of Exposure 0.10 

              2 1.3 1.2 1.2 
 

1.2 2 2 
 

0.730 0.734   0.730   0.734   0.736 0.736   0.772 
2 1.3 1.2 0.8 

 
1.2 2 2 

 
0.752 0.762   0.752   0.752   0.752 0.764   0.776 

2 1.3 1.2 1.2 
 

1.5 2 2 
 

0.770 0.778   0.770   0.766   0.768 0.786   0.808 
2 1.3 1.2 0.8 

 
1.5 2 2 

 
0.738 0.744   0.736   0.742   0.742 0.746   0.760 

2 1.5 1.2 1.2 
 

1.2 2 2 
 

0.782 0.774   0.782   0.782   0.782 0.772   0.792 
2 1.5 1.2 0.8 

 
1.2 2 2 

 
0.762 0.766   0.758   0.768   0.766 0.770   0.796 

2 1.5 1.2 1.2 
 

1.5 2 2 
 

0.804 0.800   0.804   0.806   0.806 0.802   0.834 
2 1.5 1.2 0.8 

 
1.5 2 2 

 
0.766 0.764   0.766   0.774   0.774 0.766   0.794 

Prevalence of Exposure 0.50 
        

            
2 1.3 1.2 1.2 

 
1.2 2 2 

 
0.918 0.926   0.918   0.918   0.918 0.928   0.924 

2 1.3 1.2 0.8 
 

1.2 2 2 
 

0.894 0.880   0.892   0.894   0.894 0.880   0.880 
2 1.3 1.2 1.2 

 
1.5 2 2 

 
0.898 0.902   0.898   0.902   0.902 0.904   0.900 

2 1.3 1.2 0.8 
 

1.5 2 2 
 

0.898 0.892   0.898   0.898   0.898 0.890   0.890 
2 1.5 1.2 1.2 

 
1.2 2 2 

 
0.878 0.884   0.878   0.882   0.882 0.892   0.892 

2 1.5 1.2 0.8 
 

1.2 2 2 
 

0.918 0.926   0.918   0.918   0.918 0.926   0.924 
2 1.5 1.2 1.2 

 
1.5 2 2 

 
0.876 0.874   0.876   0.880   0.880 0.880   0.876 

2 1.5 1.2 0.8   1.5 2 2   0.894 0.892   0.894   0.896   0.896 0.894   0.890 
Continuous T = Continuous Time (no aggregation), Continuous Z = Continuous Age (no 5 year age categorization), Aggregate T = De-identify data by creating 
one-week study time categories, Aggregate Z = Deidentify data by creating 5-year age categorization, Distributed = Only send summary statistics across sites 
instead of raw data, Cox = Cox PH not stratified by site, Strat. Cox = Cox PH stratified by site, and MH Strat. = Send separate site adjusted Cox PH model LR 
test statistics and variance to a central location and calculate a Mantel Haenszel type estimate. 
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Table 6. Time to study end (in days) for two site confounders and age using Lan Demets Boundary Formation, for outcome frequency=0.01 
and RR=2 for association between exposure and outcome 

              
  

TIME TO STUDY END 

RR (Y|X, Z, and Site)   RR (X|Z and Site) 
 

Continuous T 
Continuous Z   

Aggregate T 
Continuous Z   

Continuous T 
Aggregate Z   

Aggregate T 
Aggregate Z   Distributed 

X Z Site 1 Site 2   Z Site 1 Site 2 
 

Cox Strat. Cox   Cox   Cox   Cox Strat. Cox   MH Strat. 
Prevalence of Exposure 0.10 

              2 1.3 1.2 1.2 
 

1.2 2 2 
 

447 444   447   445   445 444   407 
2 1.3 1.2 0.8 

 
1.2 2 2 

 
437 437   436   437   437 437   408 

2 1.3 1.2 1.2 
 

1.5 2 2 
 

437 439   437   436   436 438   407 
2 1.3 1.2 0.8 

 
1.5 2 2 

 
439 440   439   436   437 440   413 

2 1.5 1.2 1.2 
 

1.2 2 2 
 

435 435   435   435   435 435   400 
2 1.5 1.2 0.8 

 
1.2 2 2 

 
434 437   434   432   433 437   400 

2 1.5 1.2 1.2 
 

1.5 2 2 
 

412 416   413   409   411 411   381 
2 1.5 1.2 0.8 

 
1.5 2 2 

 
426 431   426   425   424 429   398 

Prevalence of Exposure 0.50 
        

            
2 1.3 1.2 1.2 

 
1.2 2 2 

 
368 391   368   369   368 392   383 

2 1.3 1.2 0.8 
 

1.2 2 2 
 

395 417   395   391   391 415   406 
2 1.3 1.2 1.2 

 
1.5 2 2 

 
386 408   386   384   384 408   404 

2 1.3 1.2 0.8 
 

1.5 2 2 
 

376 404   376   373   374 403   396 
2 1.5 1.2 1.2 

 
1.2 2 2 

 
382 402   382   381   382 402   395 

2 1.5 1.2 0.8 
 

1.2 2 2 
 

379 399   379   377   378 398   394 
2 1.5 1.2 1.2 

 
1.5 2 2 

 
391 411   391   389   389 411   404 

2 1.5 1.2 0.8   1.5 2 2   378 407   378   375   375 405   398 
Continuous T = Continuous Time (no aggregation), Continuous Z = Continuous Age (no 5 year age categorization), Aggregate T = De-identify data by creating 
one-week study time categories, Aggregate Z = De identify data by creating 5-year age categorization, Distributed = Only send summary statistics across 
sites instead of raw data, Cox = Cox PH not stratified by site, Strat. Cox = Cox PH stratified by site, and MH Strat. = Send separate site adjusted Cox PH model 
LR test statistics and variance to a central location and calculate a Mantel Haenszel type estimate. 
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Table 7. Type I error for two site confounders and age using Exact Boundary Formation (P(Y)=0.01) 

                  TYPE I ERROR   

RR (Y|X, Z, and Site)   RR (X|Z and Site)   
Continuous T 
Continuous Z   

Aggregate T 
Aggregate Z   Distributed   

X Z Site 1 Site 2   Z Site 1 Site 2   Cox   Cox   MH Strat.   
Prevalence of Exposure 0.10                   
1 1.3 1.2 0.8   1.2 2 2   0.054   0.054   0.110   
1 1.3 1.2 0.8   1.5 2 2   0.048   0.072   0.080   
1 1.5 1.2 0.8   1.2 2 2   0.044   0.050   0.096   
1 1.5 1.2 0.8   1.5 2 2   0.044   0.104   0.068   

Prevalence of Exposure 0.50                   
1 1.3 1.2 0.8   1.2 2 2   0.026   0.050   0.040   
1 1.3 1.2 0.8   1.5 2 2   0.046   0.082   0.048   
1 1.5 1.2 0.8   1.2 2 2   0.022   0.050   0.054   
1 1.5 1.2 0.8   1.5 2 2   0.026   0.126   0.040   

*Bold indicates Type I error 0.05+-0.02               
Continuous T = Continuous Time (no aggregation), Continuous Z = Continuous Age (no 5 year age 
categorization), Aggregate T = De-identify data by creating one-week study time categories, Aggregate Z = De 
identify data by creating 5-year age categorization, Distributed = Only send summary statistics across sites 
instead of raw data, Cox = Cox PH not stratified by site, Strat. Cox = Cox PH stratified by site, and MH Strat. = 
Send separate site adjusted Cox PH model LR test statistics and variance to a central location and calculate a 
Mantel Haenszel type estimate. 
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Table 8. Power for two site confounders and age using Exact Boundary Formation(P(Y)=0.01) 

                  Power   

RR (Y|Covariate)   RR (X|Covariate)   
Continuous T 
Continuous Z   

Aggregate T 
Aggregate Z   Distributed   

X Z Site 1 Site 2   Z Site 1 Site 2   Cox   Cox   MH Strat.   
Prevalence of Exposure 0.10                   
2 1.3 1.2 0.8   1.2 2 2   0.696   0.746   0.724   
2 1.3 1.2 0.8   1.5 2 2   0.734   0.794   0.706   
2 1.5 1.2 0.8   1.2 2 2   0.682   0.728   0.712   
2 1.5 1.2 0.8   1.5 2 2   0.678   0.792   0.712   

Prevalence of Exposure 0.50                   
2 1.3 1.2 0.8   1.2 2 2   0.892   0.924   0.912   
2 1.3 1.2 0.8   1.5 2 2   0.892   0.958   0.884   
2 1.5 1.2 0.8   1.2 2 2   0.890   0.928   0.906   
2 1.5 1.2 0.8   1.5 2 2   0.908   0.970   0.892   

Continuous T = Continuous Time (no aggregation), Continuous Z = Continuous Age (no 5 year age 
categorization), Aggregate T = De-identify data by creating one-week study time categories, Aggregate Z = De 
identify data by creating 5-year age categorization, Distributed = Only send summary statistics across sites 
instead of raw data, Cox = Cox PH not stratified by site, Strat. Cox = Cox PH stratified by site, and MH Strat. = 
Send separate site adjusted Cox PH model LR test statistics and variance to a central location and calculate a 
Mantel Haenszel type estimate. 
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Table 9. Time to study end for two site confounders and age using Exact Boundary Formation 
(P(Y)=0.01) 

                  Power   

RR (Y|Covariate)   
RR 

(X|Covariate)   

Continuous 
T 

Continuous 
Z   

Aggregate 
T 

Aggregate 
Z   Distributed   

X Z 
Site 

1 
Site 

2   Z 
Site 

1 
Site 

2   Cox   Cox   MH Strat.   
Prevalence of Exposure 0.10                   
2 1.3 1.2 0.8   1.2 2 2   509   491   482   
2 1.3 1.2 0.8   1.5 2 2   492   459   491   
2 1.5 1.2 0.8   1.2 2 2   496   478   483   
2 1.5 1.2 0.8   1.5 2 2   509   459   491   

Prevalence of Exposure 0.50                   
2 1.3 1.2 0.8   1.2 2 2   436   411   454   
2 1.3 1.2 0.8   1.5 2 2   431   381   473   
2 1.5 1.2 0.8   1.2 2 2   434   405   461   
2 1.5 1.2 0.8   1.5 2 2   432   362   469   

Continuous T = Continuous Time (no aggregation), Continuous Z = Continuous Age (no 5 year age 
categorization), Aggregate T = De-identify data by creating one-week study time categories, 
Aggregate Z = De identify data by creating 5-year age categorization, Distributed = Only send 
summary statistics across sites instead of raw data, Cox = Cox PH not stratified by site, Strat. Cox = 
Cox PH stratified by site, and MH Strat. = Send separate site adjusted Cox PH model LR test 
statistics and variance to a central location and calculate a Mantel Haenszel type estimate. 

IV. DATA STRUCTURE NEEDED TO CONDUCT ANALYSES IN MINI-SENTINEL 

We will now outline the type of data needed to conduct the statistical methods described in Section 
II.B.1, standard Cox PH with de-identified data, and Section II.B.2, Mantel-Haenszel type test statistic in 
the distributed data setting. We will use the specific example outlined in the simulation evaluation, but 
scenarios with more confounders and longer study time can be easily generalized. 

A. STANDARD COX PH WITH DE-IDENTIFIED DATA 

We will first define the individual level dataset that will be aggregated at each site to be shared across 
sites. First, divide the assumed two-year surveillance time into quarters, and categorize each 
participant’s start day into the quarter in which that person first enters the study. Specifically, assume 
that surveillance started on January 1, 2012. Then, any study participants who initially entered the study 
from January 1, 2012 through March 31, 2012 (e.g. date participant started taking the exposure or 
comparator medical product and met enrollment criteria) is assigned to study quarter 1. Participants 
who entered the study from April 1, 2012 through June 30, 2012 are assigned to study quarter 2, and so 
on, up through study quarter 8.  

Statistical Methods Development - 19 - Survival Methods Development 



 
  
 
 
 
 
Each participant has exposure status, X, and covariates such as site of enrollment (Site = 1, 2, or 3) and 
Age Category (Age (years) = 35-39, 40-44, 45-49, 50-54, 55-59, 60-65) at study entry. At the specified 
analysis time a, they have the outcome indicator 𝛿𝑠𝑖𝑐 (𝑎) = 𝐼(𝐸𝑠𝑖 < 𝐶𝑠𝑖 ∩ 𝐸𝑠𝑖 < 𝑇𝑠𝑖𝑐 (𝑎)) which indicates if 
the participant experienced an outcome before they were censored or the current analysis time ended. 
At analysis time a, they also have the time to event or censoring variable (𝑇𝑠𝑖𝑐 (𝑎)), defined as the 
minimum of the time to event, censoring, or analyses time, categorized into weekly categories. We will 
now walk through a test example of 10 participants at site 1 with 4 on comparator and 6 on exposure of 
interest, and will demonstrate how the dataset is created at analysis time June 30, 2012. 
 
Table 10. Example individual-level dataset at a site 
Enrollment 
Date Site Age Exposure 

Date of 
Outcome 

Date of 
Censoring 

Outcome 
𝛿𝑠𝑖(𝑎) 

Outcome 
Time 𝑇𝑠𝑖(𝑎) 

Jan 10, 2012 1 47 0 . . 0 172 
Feb 1, 2012 1 55 1 . Mar 20, 2012 0 48 
Feb 20, 2012 1 60 0 Apr 10, 2012 . 1 50 
Mar 12, 2012 1 64 0 . . 0 110 
Mar 31, 2012 1 58 1 . Apr 18, 2012 0 18 
Apr 25, 2012  1 46 1 May 1, 2012 . 1 6 
May 30, 2012 1 42 1 Jun 12, 2012 . 1 13 
Jun 3, 2012 1 64 0 . . 0 27 
Jun 10, 2012 1 38 1 . . 0 20 
June 29, 2012 1 39 1 . . 0 1 
   
 The first step is to deidentify the individual-level data in Table 10 by creating categories for study 
quarter and age, and to calculate weeks from study start for Outcome Time, 𝑇𝑠𝑖𝑐 (𝑎)as follows: 
 
Table 11. Example individual-level deidentified dataset at a site 

Study Qtr Site 
Age 
Cat Exposure 

Outcome 
𝛿𝑠𝑖𝑐 (𝑎) 

Outcome Time 
𝑇𝑠𝑖𝑐 (𝑎) in weeks 

1 1 3 0 0 25 
1 1 5 1 0 7 
1 1 6 0 1 8 
1 1 6 0 0 16 
1 1 5 1 0 3 
2  1 3 1 1 1 
2 1 2 1 1 2 
2 1 6 0 0 4 
2 1 1 1 0 3 
2 1 1 1 0 1 
 
The next step is to aggregate the individual-level data so that several participants can be represented in 
each row, to provide deidentification and the smallest number of data rows possible. To do this we 
propose the following aggregate dataset: 
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Table 12. Example deidentified aggregate dataset at site 
Study 

Qtr Site Cat N 𝑁𝑥  Y 𝑌𝑥 𝐸10 𝐸20 … 𝐸80 … 𝐸250  𝐶10 𝐶20 𝐶30 𝐶40 … 𝐶160  … 𝐶250  
1 1 3 1 0 0 0 0 0  0  0 0 0 0 0  0  1 
1 1 5 2 2 0 0 0 0  0  0 0 0 0 0  0  0 
1 1 6 2 0 1 0 0 0  1  0 0 0 0 0  1  0 
2 1 1 2 2 0 0 0 0  0  0 0 0 0 0  0  0 
2 1 2 1 1 1 1 0 0  0  0 0 0 0 0  0  0 
2 1 3 1 1 1 1 0 0  0  0 0 0 0 0  0  0 
2 1 6 1 0 0 0 0 0  0  0 0 0 0 1  0  0 

Age 

 

𝐸11 𝐸21 𝐸31 𝐸41 … 𝐸251  𝐶11 𝐶21 𝐶31 … 𝐶71 … 𝐶251  
0 0 0 0  0 0 0 1  1  0 
0 0 0 0  0 0 0 0  0  0 
0 0 0 0  0 0 0 0  0  0 
0 0 0 0  0 1 0 1  0  0 
0 1 0 0  0 0 0 0  0  0 
1 0 0 0  0 0 0 0  0  0 
0 0 0 0  0 0 0 0  0  0 

 
where within each row defining study quarter and confounder stratum, we define the following counts: 
N is total number, 𝑁𝑥  is the number exposed, Y is the total number of outcomes, 𝑌𝑥 is the number of 
exposed outcomes, 𝐸𝑊0  is the number of outcomes in the comparator group observed at 𝑇𝑠𝑖𝑐 (𝑎)=w, 𝐶𝑊0  is 
the number censored in the comparator group observed at 𝑇𝑠𝑖𝑐 (𝑎)=w, 𝐸𝑊1  is the number of outcomes in 
the exposed group observed at 𝑇𝑠𝑖𝑐 (𝑎)=w, and 𝐶𝑊1  is the number censored in the exposed group 
observed at 𝑇𝑠𝑖𝑐 (𝑎)=w. The number of rows in the dataset will be at most the number of study quarters 
times the number of confounder categories. As the sample size increases, the number of rows in the 
dataset will not increase beyond this maximum. This dataset can be securely sent to the coordinating 
center where the data can be de-aggregated to form the dataset needed to conduct the analysis. 

B. MANTEL-HAENSZEL TYPE ESTIMATE DATASET 

This method is designed to send summary information across sites. Specifically, to conduct the primary 
observed test statistic the only information necessary to send across sites is a set of analyses time 
specific sample size, adjusted log rank test statistics, adjusted HR, and variance of adjusted HR. Further, 
it would be preferable to also submit Table 1 type information which includes by exposure and 
confounder categories the sample size, number of outcomes and total follow-up time. This would be the 
only information necessary when using normal approximation boundaries. 
 
When doing the exact boundary formation additional information further needs to be shared which is a 
set of analysis time specific log rank calculations from permuted datasets under Ho: no effect of 
exposure. For better performance of the permutation approach and computational efficiency it may be 
preferable to instead submit a limited de-identified dataset which only includes by participant an 
indicator of outcome up to analysis time a, time of the outcome or censoring at analysis time a, and at 
each analysis times the calculated summary information, 𝜷�𝑧

(0)𝒁𝑘𝑙, where 𝜷�𝑧
(0)is the estimated 

confounder coefficient under Ho no effect of exposure (i.e. fit the site-specific Cox PH model only 
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including Z in the model without X). Including this richer dataset would allow us more flexibility to 
conduct the boundary calculation along with describing the unadjusted outcome data such as Kaplan-
Meier curves. 

V. DISCUSSION AND FUTURE WORK 

This workgroup has presented different postmarket surveillance methods applicable to the distributed 
data setting with rare outcomes. We have conducted a simulation study to assess performance of these 
new approaches compared to the non-distributed data setting. We found that the de-identified 
methods performed well in most settings using normal approximation boundary approaches except 
when there was both very rare outcomes and low exposure prevalence. In this setting in particular all 
methods including standard non-distributed methods did not perform well indicated by inflated type I 
error. We then conducted evaluations using the exact boundary formation and showed that using exact 
boundaries the type I error was held in the situations in which the normal approximation boundaries 
were not applicable except for in very extreme strength of confounding scenarios with low outcome and 
exposure prevalence.  Therefore exact boundary methods should be utilized as outcome prevalence and 
exposure prevalence decrease.  In the next survival task order we will assess if we can suggest other 
methods for situations with very strong confounding such as stratification or adjustment for propensity 
score categories to reduce the dimensionality of the confounders which may be causing some of the 
issues. 
 
This task order developed two Cox PH methods using regression for active postmarket surveillance in 
which the data is distributed.  Future work to assess other type of confounding control methods, such as 
the use of propensity scores via stratification or regression may improve upon the ability to conduct 
active surveillance evaluations for Mini-Sentinel. 
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