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I. EXECUTIVE SUMMARY 

Clinical data such as laboratory test results are obtained as part of routine healthcare delivery. These 
data are not collected primarily for research and are not always available or complete. If laboratory 
results are included in analyses without considering the missing data, estimates can be biased. To 
appropriately use laboratory results data, robust statistical tools can be required to manage missing 
data.  

The objectives of this project included selecting and testing statistical methods for use when 
administrative claims and electronic health records (EHR) data are enriched with clinical laboratory test 
results, and the laboratory test results have missing data. Three applications were included in this 
project, including baseline confounding adjustment, cohort identification, and outcomes detection. The 
Specific Aims were to: 1) Summarize the literature on use of clinical laboratory results in administrative 
claims and EHR database studies of medical product safety; 2) Utilize the Mini-Sentinel Distributed 
Database (MSDD) resources to evaluate statistical approaches to incorporate clinical laboratory results 
data into medical product safety analyses; and 3) Develop recommendations and specifications to 
incorporate laboratory results data into Mini-Sentinel safety analyses. 

Findings from Specific Aim 1: Several sources of missing laboratory results data exist in the MSDD. 
However, the published literature utilizing clinical laboratory results focused almost entirely on 
Patient-Level missingness (patient characteristics or non-adherence or selective test ordering by 
providers). The literature is of little assistance in informing handling of Facility-, Organization-, Care 
Setting-, or Temporal-Level sources of missing data. 

Mechanisms of missing data include missing completely at random (MCAR), missing at random (MAR), 
and missing not at random (MNAR). MCAR rarely holds for laboratory results data and statistical 
approaches that assume MCAR, such as complete case analysis, are not appropriate to use when 
analyzing laboratory results data. MAR mechanisms could occur with laboratory results, but whether 
data are MAR is difficult to confirm. MNAR may also occur with laboratory results, but few publications 
employed missing data techniques to account for MNAR data. Consistent missing data mechanisms 
should not be expected with laboratory results data. The missing data mechanisms in a given dataset 
are influenced by the laboratory tests of interest, the population characteristics, and provider and 
system factors.  

In the literature, use of missing data techniques when analyzing laboratory results data was relatively 
uncommon. Further, few publications included data from multiple sites and different organization types, 
which is the usual condition in Mini-Sentinel. Across available publications, multiple imputation (MI) 
methods emerged as important. The relative prominence of MI was likely influenced by both the depth 
of prior methodological work as well as increasing availability of MI methods in software packages. 

Findings from Specific Aim 2, laboratory results as baseline confounder: Three baseline confounder test 
cases were studied: 1) Baseline glycosylated hemoglobin (HbA1c) or fasting blood glucose or random 
blood glucose (composite variable “GLU”) in a cohort of adults without diabetes newly-initiating a 
second generation antipsychotic (SGA) where the outcome of interest was a diabetes diagnosis; 2) 
Baseline serum creatinine in a cohort of patients with diabetes who were newly-starting lisinopril where 
the outcome of interest was a hyperkalemia diagnosis; and 3) Baseline INR in a cohort of current 
warfarin users starting an antimicrobial medication where the outcome of interest was a bleeding 
diagnosis. In all three test cases, the amount of missing laboratory results data varied across the three 
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participating data partner sites, with the highest amount of missing data at the large national insurer 
data partner. Important site differences were observed in both predictors of missingness and in 
outcomes. The most striking finding from these test cases was the differences in results between a 
single pooled analysis versus either a site-specific analysis or a meta-analytic approach. The workgroup 
therefore recommends site-specific models when using laboratory results as baseline confounders. 
Several different missing data methods and models led to similar point estimates and 95% confidence 
intervals in all baseline confounder test cases. Models that ignored missing data at times yielded 
different results from models that included missing data. Different analytic methods, particularly the 
approach taken to integrate results from different Data Partner sites, impacted model results more 
than different missing data methods.  

Findings from Specific Aim 2, laboratory results to supplement cohort identification: Two cohort 
identification test cases were considered: 1) Supplementing identification of a cohort of pregnant 
women through considering positive qualitative or high quantitative pregnancy laboratory results 
(human chorionic gonadotropin; HCG) in addition to prenatal diagnosis and procedure codes; and 2) 
Enhanced identification of a cohort of adults with Chronic Kidney Disease (CKD) through considering 
serum creatinine laboratory results to estimate patients’ glomerular filtration rates in addition to coded 
CKD diagnosis. Important variability in missing laboratory results was again observed across Data 
Partners. In both test cases, inclusion of laboratory results augmented the cohort size at all Data 
Partner sites. Using laboratory results identified individuals with CKD who would not have been 
identified using definitions that did not include laboratory values. Also, in both cohorts, some individuals 
were recognized for cohort inclusion earlier with laboratory results than with diagnoses. Use of HCG 
results was particularly important when identifying women with miscarriages and abortions. For 
studying drug safety in pregnancy, identifying pregnancies based on laboratory results might be 
important if the exposure drug could be associated with maternal safety concerns, pregnancy loss, or 
other adverse impacts on the fetus or infant. 

Findings from Specific Aim 2, laboratory results to detect outcomes: Two outcomes detection test cases 
were considered: 1) Diabetes outcome and blood glucose or HbA1c laboratory test results (GLU) among 
adults initiating an SGA; and 2) Upper gastrointestinal (UGI) bleeding outcome and hemoglobin (HGB) 
laboratory test results among adults initiating a non-steroidal anti-inflammatory drug (NSAID). Once 
again, missing laboratory results data varied across data partner sites. In the first outcomes test case, 
laboratory results identified additional patients with the outcome, but including laboratory results did 
not identify outcomes earlier. The outcome rate was higher among individuals with laboratory results 
available, suggesting that clinicians selectively choose patients for laboratory monitoring who they 
believe are at higher risk of the outcome. This finding could also suggest that outcomes are under-
recognized due to lack of monitoring. In the second outcomes test case, inpatient UGI bleeding 
diagnosis codes (with or without an observed drop in HGB > 3 g/dL) was considered the standard 
definition. Using an observed drop in HGB in conjunction with a non-inpatient coded UGI bleeding 
diagnosis identified very few additional outcomes across the three participating sites. Further, using 
HGB results alone to identify UGI bleeding did not distinguish between UGI bleeding and bleeding 
from other body locations. Therefore, a drop in HGB was only modestly useful in detecting clinically 
important bleeding, and a drop in HGB alone was not sufficient to identify UGI bleeding.  

Findings from Specific Aim 3: The literature is of modest value in guiding approaches to handling missing 
laboratory results data in Mini-Sentinel assessments. When developing an active surveillance plan, the 
missing data should be described overall and by key study population variables early in the project. 
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Reasons for missing laboratory results in observational multi-site studies are complex and deserve 
thought and discussion during analysis planning.  

Including laboratory results data can improve baseline confounding control, with a few caveats. For 
baseline confounder assessment using MSDD data, site-specific models are important for MI and 
propensity scores even when end results are pooled across sites. The MI regression method is common 
and easy to implement. Because it relies on a normality assumption, skewness must be assessed up 
front and a log-transformation should be performed to improve symmetry if needed. Ideally, results 
should be compared between different strategies for handling laboratory results data. Including 
laboratory results as baseline confounders using statistical tools such as MI is a decision that should 
be made after considering the amount of missing data at the data partner sites. Including laboratory 
results data should not be based primarily on imputed data from some Data Partners.  

We recommend including laboratory results data (when applicable) to supplement cohort 
identification when applying an algorithmic approach. Comparing percentages of the cohort from each 
site identified using laboratory results data is an important component of assessing appropriateness 
within specific cohorts. Utilizing the laboratory results can be particularly important to drug safety 
studies, as we demonstrated in the pregnancy cohort identification and the CKD cohort identification 
test cases we examined. 

We do not recommend employing laboratory results data as a sole criterion when detecting health 
outcomes. In general, we also do not recommend imputing outcomes. In one of the outcomes test 
cases, laboratory results identified an important number of additional outcomes, while in the other, few 
additional outcomes were identified. Decisions about whether or not to include laboratory results in 
algorithms that identify health outcomes in the MSDD should be made on a scenario-by-scenario 
basis.   

Although not part of the scope of work of this project, it was intended that findings from this Workgroup 
would ultimately lead to the development of software programs for incorporating laboratory results into 
safety analyses that are compatible with existing modular programs for expedited safety monitoring 
using the Mini-Sentinel Routine Analytic Framework. The existing Mini-Sentinel Routine Analytic 
Framework can identify some cohorts that utilize laboratory results data. However, the existing Mini-
Sentinel Routine Analytic Framework is not sufficient for utilizing laboratory results data in scenarios 
that have complex index dates, that require temporal relationships between laboratory results, or that 
utilize changes in laboratory result values over time. Enhancements to existing capabilities would be 
necessary to enable use of laboratory results in those scenarios. Also, the Mini-Sentinel Routine Analytic 
Framework currently cannot assist with missing data characterization. Logical first steps to develop such 
capability could be creating a repeatable, reusable process to describe missing data within a cohort 
overall and by site, and diagnosing whether available laboratory test result data appear to be MAR to 
inform whether it is reasonable to impute the missing data. Other tasks required to use laboratory 
results currently require custom programming such as the capability to then incorporate missing data 
techniques when missing data are expected. Given existing capabilities of the Mini-Sentinel Routine 
Analytic Framework, use of laboratory results data in current Mini-Sentinel evaluations is most often 
feasible only within Protocol-Based Assessments. 
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II. INTRODUCTION 

As part of the activities for Task Order #8 (Foundational Elements 2 /Medical Countermeasures, Activity 
E: Statistical Methods Development) several statistical methods were selected and developed to 
improve Mini-Sentinel active surveillance capabilities. One of these activities was to develop and test 
analytic methods for using laboratory test results in active surveillance for improving confounding 
control and outcome definitions. By 2014, the Mini-Sentinel Distributed Database (MSDD) clinical 
laboratory results data table (LRT) included over 730 million clinical laboratory test results for selected 
chemistry, hematology, coagulation and influenza tests obtained from nearly 32 million unique health 
records.1 Appropriate use of these data is not straightforward because laboratory results data carry 
availability and completeness issues reflecting several missing data mechanisms. Inclusion of LRT data in 
active surveillance analyses without considering the missing data or even with applying older analytic 
techniques based on fairly strict assumptions about the causes of missing data can yield markedly biased 
estimates.2 Some recent approaches to handling missing data (e.g., multiple imputation [MI]) are 
potentially useful because they require less strict assumptions about the causes of missing data, and can 
produce less biased parameter estimates.2 However, even newer statistical techniques often require 
data to be missing at random (MAR). Therefore, testing the performance of statistical approaches and 
developing guidance for appropriately including LRT in Mini-Sentinel surveillance is critical.  

The objective of this project was to select and test statistical methods appropriate for use when 
analyzing cross-sectional and longitudinal observational healthcare administrative, claims, and clinical 
data, with specific attention to clinical laboratory results when missing data are expected. Recognizing 
that different uses of laboratory results data (e.g., confounding adjustment, detecting outcomes, cohort 
identification) in medical product safety surveillance could optimally employ different methods to 
handle the missing results data, we evaluated more than one method for use in the MSDD environment.  

To select and evaluate the performance of statistical methods with intent to potentially recommend 
techniques for including laboratory test results data in Mini-Sentinel safety surveillance, we had the 
following Specific Aims: 

 Specific Aim 1. Summarize the literature on the use of clinical laboratory test results databases in 
administrative claims and electronic health records (EHR) database studies of medical product 
safety.  

 Specific Aim 2. Utilize the MSDD resources to evaluate analytic methods for incorporating 
laboratory test results data into medical product safety analyses.  

 Specific Aim 3. Develop recommendations and detailed specifications for incorporating LRT data 
into Mini-Sentinel safety analyses. 
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III. MISSING DATA IN THE MINI-SENTINEL COMMON DATA MODEL (MSCDM) 
LABORATORY RESULTS DATA TABLE (LRT) 

A. SOURCES OF MISSING DATA IN THE LRT 

The MSDD (www.sentinelinitiative.org/sentinel/data/distributed-database-common-data-model/106) is 
emerging as an efficient tool for active surveillance of medical product safety.3 Data transformed into 
the MSCDM at each Data Partner (DP) site facilitate use of shared programming across DP sites, while 
maintaining local control, security, and confidentiality of data access and use.4-6 The MSCDM includes 
linked tables comprised of transformed administrative and claims data for enrollment, enrollee 
demographics, diagnoses, encounters, procedures, outpatient pharmacy dispensings, and death.7, 8 
While claims for laboratory procedures are in the MSCDM tables and indicate laboratory tests were 
completed, procedure claims do not include clinical result values and are of little use for confounder 
adjustment, cohort identification, or outcomes detection associated with safety of a medical product 
exposure. However, laboratory test result values have the potential to contribute to confounder 
adjustment, enhance cohort identification, and supplement outcomes definitions, and availability of 
electronically-extractable laboratory results at several DP sites made it possible to expand the MSCDM 
to include an LRT.  

Because LRT data are observational and extracted from data collected during routine healthcare delivery 
at US medical facilities, they carry availability and completeness challenges. There are two fundamental 
contributors to missingness of laboratory results data in the MSCDM. First, the laboratory test was not 
done because it was never ordered or because an ordered test was not successfully completed. Second, 
the laboratory test was completed but the result was not accessible for inclusion in the MSCDM due to 
administrative, contracting, database, or documentation factors. Therefore, to appropriately use LRT 
data in medical product safety surveillance requires applying statistical tools that aid in managing and 
minimizing these inherent missing data challenges. The LRT data availability or completeness challenges 
are detailed below. 

1. Differential missing data across Data Partners (DPs) and variation in laboratory test result 
data availability by DP type (DP Organization-Level Missingness) 

Currently, 12 (of 18) DPs contribute laboratory results data to the MSDD, including three large insurance 
plans, three healthcare delivery systems with insurance functions, and six group model integrated 
healthcare delivery systems. These 12 DPs accounted for about 100 of the 150+ million unique individual 
health records in the MSDD in 2013, but not all of these individuals would have laboratory test results 
(e.g., healthy children are unlikely to have any completed laboratory results). Eleven DPs provide results 
for all laboratory test types currently in the LRT. One DP provides results for only some laboratory test 
types. Additional DPs may in the future contribute laboratory results data to the LRT. The LRT data 
currently available from the three large insurance plans are limited to outpatient tests. Further, these 
large insurers only have contracts with laboratory systems database vendors that provide results for 
15% to 30% of their enrollees. DPs that are healthcare delivery systems with insurance functions have 
internal laboratory system databases, electronic health record (EHR) databases, and/or contracts with 
laboratory systems database vendors that provide outpatient test results for 60% to 80% of their 
members. The group model integrated healthcare delivery system DPs have internal laboratory 
system/EHR databases that can provide outpatient test results for 90% to 100% of their members.  

http://www.sentinelinitiative.org/sentinel/data/distributed-database-common-data-model/106
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2. Patient location where laboratory testing was conducted and lack of availability of 
hospital, emergency department, and medical office-based laboratory test results (Care 
Setting- Level Missingness) 

As mentioned above, the laboratory results available from the large insurance plans are limited to test 
results nearly entirely from the ambulatory care environment. Similarly, the results available from the 
healthcare delivery systems with insurance functions and from two of the six integrated healthcare 
delivery systems are limited primarily to outpatient results. Four integrated healthcare delivery systems 
provide outpatient test results and also provide inpatient test results from acute care hospitalizations 
for 40% to 100% of their members. One integrated healthcare delivery system DP also has emergency 
department test results for essentially 100% of its members. Active surveillance activities designed to 
evaluate severe or life-threatening adverse outcomes where the most abnormal laboratory results are 
obtained in conjunction with an emergency department visit or inpatient hospitalization (e.g., liver 
function tests associated with acute liver injury) are underrepresented in the current LRT. Active 
surveillance activities designed to evaluate population-based laboratory test results obtained in the 
ambulatory care environment (e.g., international normalized ratio [INR] monitoring associated with 
warfarin use; glycosylated hemoglobin [HbA1c] results among patients with diabetes) will have more 
complete data availability capture, particularly at DPs with results data from 90% to 100% of members. 
For all DPs, laboratory results obtained from testing conducted in the medical office (“point-of-care”) 
are often not available to the DP to include in the LRT. 

3. Earliest date of laboratory results data availability (Temporal Level Missingness) 

LRT data are available from 2006 forward for ten (of 12) DPs. The start date for LRT data from one large 
insurance plan is mid-2007 and for another large insurance plan is 2008. 

4. Obtaining laboratory test outside of contracted/owned facilities/laboratories (Facility-
Level Missingness) 

Test results that are obtained at non-contracted facilities are not available in DP source laboratory 
databases. Examples include test results that are faxed, called, or hand carried from an outside facility to 
a DP facility, results obtained during an emergency department visit (for 11 of these 12 DPs), and some 
point-of-care (POC) test results. Such test results are typically entered into the medical record as a text 
field or are scanned into the medical record as a PDF (i.e., not electronically extractable into the 
laboratory database). 

5. Variation in reference ranges and laboratory assay methods across institutions and within 
institutions over time (Institutional-Level Missingness) 

The scope of this project did not include addressing variation in laboratory results data that occur due to 
variations in reference ranges and laboratory assay methods, but we briefly describe these for 
completeness. Different assay methodologies have differing standards and sources of variability, but the 
assay method can only occasionally be identified from source data. For example, when Logical 
Observation Identifiers Names and Codes (LOINC®) are associated with test results, the assay method 
can at times be identified from the specific LOINC®.  

The reference range associated with each patient-specific test result from the data partner’s source data 
is included as an LRT data field. This enables applying or adjusting for the reference range when its 
variability is important to a specific analysis. Existing normalization methods intended to support 
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integration of clinical laboratory test results from different institutions have not been applied to the 
MSDD LRT to date because such methods need further development before they will be of potential 
value to LRT data applications.  

6. Termination of plan membership (Patient-Level Missingness) 

This source of missing data is not unique to the LRT or the MSDD, but is pervasive in observational 
healthcare databases. Throughout the US, an individual’s healthcare data are not recorded into a 
healthcare provider/insurer’s database after the date that individual’s enrollment ends with that 
healthcare provider/insurer.  

7. Provider non-adherence to ordering recommended laboratory monitoring or patient non-
adherence to completing ordered tests (Patient-Level Missingness) 

This type of missing data is also pervasive in healthcare databases across the US. Numerous factors 
contribute to non-adherence with ordering and completing recommended laboratory monitoring some 
of which include communication gaps between provider and patient, low patient health literacy, lack of 
knowledge by the provider of recommended monitoring for the drug, and provider perception that 
laboratory monitoring for a particular drug is not a priority. One example of the extents of provider and 
patient non-adherence to ordering and completing recommended laboratory monitoring is 
demonstrated in a randomized controlled trial conducted by Raebel et al.9 That trial was designed to 
determine whether a computerized tool that alerted pharmacists to missing laboratory test results was 
effective at increasing the percentage of patients receiving appropriate monitoring at initiation of high-
risk drug therapy.10 In collaboration with physicians, pharmacists were alerted to missing test results, 
ordered missing tests, reminded patients to obtain tests, assessed test completion, and reviewed and 
managed abnormal results. Results included that patients in the intervention group received 5153 
dispensings of high-risk drugs within the one year study period versus 5016 dispensings in the control 
group. For 816 intervention group patients, pharmacists ordered laboratory testing that was 
recommended at initiation of therapy and that had not been ordered by the physician. For 194 
intervention group patients, physicians had ordered laboratory tests that patients had not completed 
and pharmacists reminded the patients to obtain the tests.  

8. Selective assessment correlated with patient clinical features, quality initiatives, or care 
coordination (Patient-Level Missingness) 

This type of missing data is also common in observational healthcare databases across the US. 
Missingness associated with selective assessment can be thought of as confounding by indication due to 
factors such as the patient’s engagement (or non-engagement) with medical care, disease severity, 
acute illness assessment, chronic illness management, new medication initiation, or other situations 
where laboratory tests are carried out more frequently in one subset of individuals than another. Also, 
laboratory test ordering and completion is conducted more often for patients and laboratory test types 
included in local or national quality measures or in quality improvement initiatives (e.g., measurement 
of HbA1c within specified time intervals among patients with diabetes is a Health Effectiveness Data and 
Information Set [HEDIS] quality of care measure). Finally, variations in practice and care coordination 
across sites and types of healthcare systems contribute to differences in rates of laboratory testing and 
therefore differences in patient-level missingness of laboratory test results. General examples at several 
integrated healthcare delivery system sites that participate in Mini-Sentinel are the collaborative drug 
therapy management protocols and services that facilitate medication management and laboratory 
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monitoring of medication therapy by a variety of healthcare professionals for chronic conditions such as 
hypertension, diabetes, anemia, and lipid disorders.11-13 One specific example is the centralized 
anticoagulation management service at one of the Mini-Sentinel Data Partners that, in comparison to 
usual care, has been shown to increase the frequency of international normalized ratio (INR) monitoring, 
increase the proportion of time spent in the therapeutic range, and to achieve better outcomes among 
patients receiving warfarin therapy.14 

B. PATTERNS OF MISSING DATA IN THE LRT 

While no formal assessment has determined patterns of missing data in the LRT, some patterns are 
certainly present due to the nature of clinically-derived data. For example, a general missing data 
pattern is likely common. In a general pattern, values are missing in an apparently random distribution, 
but values can be systematically missing. A general missing data pattern can occur for example, with 
provider or patient non-adherence to recommended laboratory monitoring. A monotone missing data 
pattern typically occurs with longitudinal data assessment and is seen for example, after individuals 
terminate insurance plan enrollment. To the extent possible, we will describe missing data patterns in 
MSDD examples and review statistical approaches most robust to differing missing data patterns.  

C. MECHANISMS OF MISSING DATA IN THE LRT 15 

1. Missing completely at random (MCAR) 

MCAR data exist when the probability of missing data on a variable is unrelated to other measured 
variables and is unrelated to the values of the variable itself (i.e., completely unrelated to the data, 
random missingness). MCAR is the least problematic; however, it is unlikely in the LRT data. 

2. Missing at random (MAR) 

MAR data exist when there is no relationship between the probability of missing data on a variable and 
the values of that variable, after conditioning on other measured variables (i.e., the probability of 
missing data of a variable is solely a function of other measured variables). A possible example of MAR 
data in the LRT is the missing calendar year 2006 data from two DPs. In most analytic situations it is not 
possible to confirm that data are MAR. 

3. Missing not at random (MNAR) 

MNAR data exist when the probability of missing data on a variable is related to the values of the 
variable itself, even after conditioning on other measured variables. It is not possible to determine that 
data are MNAR without knowing the result values of the missing variables.2 

4. Importance of the missing data mechanism 

MCAR, MAR, and MNAR mechanisms are important because they are assumptions that govern the 
performance of missing data handling strategies.2 For example, restricting to cases with complete 
covariate data assumes and requires MCAR data and will provide biased estimates if the data are MAR 
or MNAR. More robust missing data techniques, such as multiple imputation (MI), require the less 
stringent MAR assumption. Any missing data technique will produce biased estimates if the underlying 
assumptions are violated. 



 
  
 

 
 

Statistical Methods - 9 -  Analytic Methods for Using Laboratory Test Results 

IV. LITERATURE ON THE USE OF CLINICAL LABORATORY TEST RESULTS 
DATABASES IN CLAIMS AND ELECTRONIC HEALTH RECORD DATABASE 
STUDIES OF MEDICAL PRODUCT SAFETY 

A. LITERATURE REVIEW OVERVIEW 

The Mini-Sentinel Analytic Methods for Using Laboratory Test Results in Active Database Surveillance 
Workgroup (the Workgroup) reviewed, described, summarized, and interpreted the published literature 
on the use of clinical laboratory test results in electronic health records database and other 
observational data studies of medical product safety. The main emphasis of the review was on missing 
laboratory test results where clinical laboratory results were included as covariates, used in cohort 
identification, or used in detecting health outcomes, and how missing observations were addressed in 
published studies, including mechanisms and patterns of missing data, predictors of missingness, 
analytic methods to handle missing observations, and assessment of the methods’ performance. In 
addition, we created a database to summarize the reviewed articles and pertinent details of study 
design, specific laboratory tests studied, missing data descriptions, and any missing data techniques 
used.  

Because the overall goal of this literature review was to describe missing data analytic methods used by 
studies comparable to those expected to be undertaken within Mini-Sentinel, the literature review 
informed the Workgroup by providing a critical evaluation and narrative summary of the methods used 
in published observational research studies using claims data, other electronic administrative data, or 
EHR data where missing laboratory results data were encountered. Because prospective intervention 
studies use data collection techniques that are not common to our focus on observational studies, we 
did not include them in this review. Prior to beginning the literature review, the Workgroup identified 
two key questions: 

 Key Question 1. Regarding the actual missing clinical laboratory test results in published studies 
employing laboratory results databases, 

a. Were missing data acknowledged and described?  
b. Were the mechanisms of missing test results identified? If so, what were they?  
c. Were the patterns of missing test results identified? If so, what were they? 
d. Were the predictors of missingness of test results determined? If so, what were the 

predictors? 

 Key Question 2. Regarding how missing clinical laboratory test results observations in published 
studies employing laboratory results databases were handled in those studies,  

a. What analytic methods were employed?  
b. Was the performance of these methods addressed (e.g., was bias assessed, were different 

methods compared)? 
c. If the performance of these methods was addressed, how did the methods perform? 

B. LITERATURE REVIEW METHODS 

Descriptions of methods used for handling missing clinical laboratory test results in observational claims 
and electronic health records database studies of medical product safety are often not reflected in 
papers’ titles, abstracts, or key words. For that reason, we did not conduct a systematic literature search 
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to identify studies for inclusion in the review. Instead, we conducted multiple searches using varied 
strategies. We also consulted investigators with expertise in missing data methods, reviewed the 
reference sections of papers identified as potentially relevant, and conducted an exhaustive search of 
papers published in one journal as part of this review. Here we describe important elements of the 
search process. 

Literature searches were conducted by searching PubMed, OVID, and the Cumulative Index to Nursing 
and Allied Health Literature (CINAHL®). The National Library of Medicine’s Medical Subject Headings 
(MeSH) keyword nomenclature developed for MEDLINE®

 

and adapted for use in other databases was 
employed, with searches limited to studies published in English between January 1, 2000 and June 30, 
2014. Search details, including search terms and numbers of articles identified in each search, are 
provided in the Table in Appendix A. Preliminary, general searches employing terms such as “missing” or 
“missing data” as text or key words in conjunction with laboratory indicator terms (i.e. “laboratory” as 
text word; “diagnostic test” or “routine” as MeSH terms) returned many thousands of citations. 
Unfortunately, review of the titles of these citations revealed almost none pertaining to research that 
analyzed laboratory results data with missing values; review of abstracts of the very few potentially 
pertinent citations identified most of those papers to also not be relevant (e.g., studies that gathered 
laboratory results via chart review).  

Searches focused on specific laboratory test types and on particular missing data techniques were 
conducted next. In focused searches we selectively queried 11 specific laboratory test types (i.e., 
glucose, hemoglobin, HbA1c, platelets, alkaline phosphatase, alanine aminotransferase, bilirubin, 
creatinine, creatine kinase, lipase, and INR) together with a laboratory term (“laboratory” or “diagnostic 
test” [text words]; “routine” [MeSH term]) and either “missing” (as a text word) or selected missing data 
analytic technique terms (i.e.. MI, predictive mean matching, and MNAR techniques [pattern mixture, 
selection model], longitudinal studies). Focused searches retrieved few citations, but most citations 
found were pertinent.  

By definition, within the context of our key questions, searches focused on a particular missing data 
technique had important limitations. For example, focused searches could not assist in determining 
relative frequencies of use of different missing data techniques or which missing data techniques were 
most commonly applied overall. For these reasons, we also examined the titles, abstracts, and analytic 
methods applied in every article published in Pharmacoepidemiology and Drug Safety (PDS) between 
2001 and mid-2014 that examined laboratory result values, regardless of whether the article was 
retrieved in any of the previous searches. We chose PDS because its focus is similar to the activities 
undertaken within Mini-Sentinel. 

We also utilized the expertise of the Workgroup by soliciting relevant articles known to Workgroup 
members. References of pertinent articles retrieved through all of these methods were examined to 
identify additional studies of potential interest.  

Potentially relevant citations were imported into a relational database specifically developed for this 
project. A screenshot of the database entry form is shown in Appendix B. Abstracts were reviewed and 
the full texts of relevant articles were retrieved and further reviewed. Each study’s methods and findings 
were summarized using a standard set of criteria (Appendix C). Examples of the criteria used to critically 
review and summarize each paper included the following:  

 What were the study objective, population, general methods, and result? 

 Were the laboratory results used in the study from one or multiple organizations? 
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 Does the study include results of only one laboratory test type (e.g., serum creatinine) or results 
from several different test types? 

 What is the size of the study/number of study patients and laboratory tests (e.g., is the study 
population size potentially relevant to the Mini-Sentinel environment of studying rare adverse 
events/rare exposures)? 

 How were laboratory results used (i.e., as covariates, in outcomes detection, or for cohort 
identification)?  

 Does the study address sources of missing data? 

 Are the mechanisms and patterns of missing data addressed?  

 Are predictors of missingness studied? 

 Are analytic methods to handle missing observations addressed? If so, what analytic method was 
applied? If so, were sensitivity analyses completed/ was method performance assessed? 

C. LITERATURE REVIEW RESULTS 

1. Use of missing data techniques in publications analyzing laboratory results data 

Although limited use of missing data techniques in the published literature was indirectly evident from 
the low capture of pertinent articles in searches, the best estimate of overall use of missing data 
techniques when analyzing laboratory results data resulted from the search of articles in PDS that 
included laboratory results data. From 2001 to mid-2014, 112 articles were identified in PDS using the 
laboratory search terms. The majority of these articles (77%, n=86) were not applicable to our search for 
observational claims and electronic health records database studies of medical product safety for the 
reasons noted in Table 1.  

Among the 26 relevant papers from PDS, one article used HbA1c > 7%, if available (without addressing 
missingness), as one pathway for cohort entry, but also used diagnosis codes or anti-diabetic medication 
prescriptions.16 Three articles described missing laboratory results data but did not analyze the 
laboratory results data.1, 17, 18 Eighteen of the remaining 22 articles (82% of the 22) used complete case 
analyses. Thus, only four articles published in PDS used missing data techniques: two MI,19, 20 one 
regression imputation21 and one inverse probability weighting.22 These results suggest that use of 
missing data techniques when analyzing laboratory results data has been very limited to date; complete 
case analyses predominate. 

Table 1. Reasons 86 of 112 Article in Pharmacoepidemiology and Drug Safety were Not Pertinent in 
Database Studies of Medical Product Safety that included Laboratory Results Data 

Reasons Articles were Not Pertinent Number (total = 86) %  

Laboratory results data not evident a 19 22 

Laboratory results data not analyzed b 13 15 

Missing data not mentioned or described  11 13 

Data collection technique (e.g., direct data capture, meta-analysis) 11 13 

Article type (e.g., case study, commentary) 10 12 

Monitoring/laboratory test completion study 8 9 

Reference value study/Database or coding validation 4 5 

Other c 10 12 
a Articles mentioned future study recommendations, limitations, or non-laboratory diagnostic tests 
b Articles looked at policy impacts, decision analyses, tools for adverse event monitoring, etc.  
 c Examples: small pilots, record linkage studies, prescribing alerts 
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2. Classification of potentially pertinent articles 

We found a total of 240 potentially relevant articles (112 from PDS and 128 from the other general and 
focused searches). As noted above, use of missing data techniques when analyzing laboratory results 
data was relatively rare. Nevertheless, the few articles utilizing methods to adjust for missing laboratory 
results data offer insights for the current project. Here we briefly describe all potentially relevant articles 
identified across all searches and provide detail from selected articles.  

Categorization of the 240 potentially relevant articles is shown in Table 2. Upon examination of the 
articles, over half (n = 129; 54%) were not pertinent. Eight articles described missing data patterns but 
did not analyze data and had no need to apply missing data analytic techniques. However, these eight 
articles were useful in describing patterns of missing data (see below). Articles classified as ‘Methods 
only’ did not include laboratory data analyses. Of the 77 articles categorized as pertinent, 37 (48%) used 
at least one missing data technique (details on the methods used in these articles are in Section V.C.4.), 
38 (49%) used complete case analyses only, and two (3%) utilized laboratory data as supplementary data 
for cohort selection only.  

Table 2. Classification of the 240 Potentially Relevant Articles Identified during Literature Review 
Classification Number (total = 240) % 

Not pertinent a 129 54 

Used or analyzed missing laboratory results data 77 32 

  Missing data technique 37 

  Complete case analysis 38 

  Supplemented cohort selection 2 

Methods only 23 10 

Described missing laboratory results data only 8 3 

Not able to classify, full article not available 3 1 
a 86 of ‘not pertinent’ articles detailed in Table 1. For the remaining 43, the most common reasons were missing data not 

mentioned or described (17 [40%]), laboratory results data not analyzed (7 [16%]) and laboratory results data not evident 
(6 [14%])  

3. Descriptions of uses or analysis of missing laboratory results data in published articles 

Although 77 articles (Table 2) provided some evidence of missing laboratory results data, descriptions of 
missing laboratory results data were generally incomplete. As one example, only ten articles (14%) 
described missing data beyond simply noting the percentage missing. As another example, one article 
required laboratory results to be available for inclusion in the analyses presented but did not present a 
cohort selection flowchart or other description of the full population (i.e., the reader could not 
determine the proportion excluded due to missing laboratory results data).23 Another published 
analysis24 used last observation carried forward when analyzing outcome data at specific follow-up 
times, but the number and timing of follow-up data were not described. Some of the most detailed 
descriptions of missing laboratory results data were in articles that only described missing data and did 
not analyze data within the same paper. 1, 25, 26 This observation potentially suggests that limitations on 
article length and table number, or perhaps perceived lack of importance of missing data to the study 
purpose (by authors, reviewers and/or editors) contributed to lack of published details about missing 
data.  
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The following patterns and details about missing laboratory results data were noted in the publications: 

 Missing data patterns described in existing publications generally focused on patient 
characteristics, also referred to as Patient-Level Missingness. Putting such missingness in 
context, patient-level missingness can be patient-driven, provider-driven, or reflect a 
combination of patient and provider factors. Provider decisions to order laboratory tests may 
strongly reflect population characteristics such as perceived risk or severity of illness, while 
patient decisions to adhere to completing ordered tests can reflect characteristics such as low 
health literacy, access issues, or competing priorities, for example. Most published observational 
database studies did not – could not-- differentiate between whether a) the data were missing 
because the provider did not order the test or b) the patient did not adhere to completing the 
ordered test. This is because currently published studies employing clinical laboratory results did 
not have access to test orders, but only could access completed tests. Additionally, if a 
laboratory result is not necessary to the clinical care of the patient, but a researcher expects the 
laboratory result to be available for research purposes, the test result is considered to be 
“missing.” However, this “missingness” when a test is not done is not missing in the same sense 
that a test result is missing when the test was completed and, for some reason, that test result is 
not available within the database.  

 Examples of Patient-Level Missingness noted in publications:  

o Two papers reported that missing laboratory results values occurred more often among 
persons who were younger and had fewer comorbidities,27, 28 while two other 
publications reported persons excluded due to missing data were older with a higher 
probability of mortality in the following years29 or had mixed comorbidity patterns.30  

o Witt and colleagues31 noted that missed INR tests results, i.e. non-adherence with 
ordered INR testing, likely also reflected non-adherence with prescribed warfarin use.  

 When looking at dyslipidemia in youth, Li et al.32 found children with lipid testing were much 
more likely to be obese, have diabetes, or to have hypertension likely reflecting selective 
ordering by providers. Such patterns may be accentuated when frequency of testing in general is 
low, as in their study where only 7% of children had any lipid laboratory results available.  

o Pivovarov and colleagues examined temporal measurement patterns, specifically 
identifying short gaps versus long gaps between tests as one tool for indicating different 
test patterns related to distinct disease states.25 Varied patterns emerged for particular 
laboratory tests, but as one example, high lipase values were more strongly associated 
with an acute pancreatitis diagnosis when gaps between laboratory measures were 
short (0-3 days) compared to values with gaps > 3 days. This example reminds us that 
laboratory tests are ordered, completed, and interpreted in specific contexts (e.g., 
diagnosis of acute illness, monitoring of response to therapy or monitoring disease 
progression) during episodes of providing healthcare and that the care context is often 
not obvious in observational database studies.  

 Very few publications discussed missing data patterns related to system, location, or temporal 
factors, that is Facility-Level Missingness, Organization-Level Missingness, Care-Setting Level 
Missingness, and/or Temporal-Level Missingness. However, these are important types of 
“missing” data for Mini-Sentinel activities and are common missing data types in the MSCDM 
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because these missing data types reflect situations where the test was completed but, for some 
reason, the test result is not available within the database. 

o Trickey and colleagues33 noted data availability differed between trauma centers due 
to healthcare site processes and policies. Similarly, Raebel and colleagues 1 reported 
rates of metabolic monitoring of youth starting second-generation antipsychotic 
agents differed between integrated and less-integrated healthcare systems in the 
United States; these differences remained significant after accounting for selected 
patient characteristics.34 Health plan type may also impact healthcare use and data 
capture. For example, Reddy et al35 reported a modest reduction in general 
laboratory testing for persons who were switched to High Deductible Health Plans 
compared to persons who remained in traditional HMO plans. 

o One of the most extensive descriptions of laboratory data from administrative 
sources examined available low-density lipoprotein (LDL) cholesterol, high density 
lipoprotein (HDL) cholesterol, and HbA1c tests in a large cohort of patients initiating 
lipid lowering therapy at 14 Blue Cross/Blue Shield health plan sites in the US.26 This 
work by Schneeweiss and colleagues captured outpatient laboratory results and 
claims codes (a claim code indicates test completion but does not provide the test 
result value). In their cohort, 68% of patients had a laboratory test claim, while 42% 
had laboratory results available. Whether a patient had evidence of a laboratory test 
being completed was strongly associated with patient characteristics, while 
laboratory results availability varied by healthcare system characteristics and state of 
residence. They highlighted several additional factors that impacted laboratory data 
capture including: a) lower testing rates for persons recently hospitalized who may 
have had tests completed as inpatients; b) patients with Medicare Supplemental 
coverage had a lower proportion of claims and few results available attributed to 
health plans typically being secondary, not primary, payers; c) laboratory results for 
their cohort were only available from specific contracted laboratory providers who 
did not operate in all the states studied; and d) patients receiving lipid treatment 
after recent myocardial infarction or acute coronary events had lower rates of 
laboratory testing, probably due to receiving the drug as secondary prevention. Of 
note, this study was conducted using the databases of a Mini-Sentinel DP that is a 
large national insurer. 

In summary, the findings of patterns of missing laboratory data in published studies highlight three main 
points. First, consistent patterns of missing data should not be expected because missing data patterns 
are heavily influenced by the specific laboratory test type(s) of interest, by study population 
characteristics, and by provider and system factors. Therefore, describing missing data overall and by 
key variables within the study population is an important early step in research studies. Second, the 
existing literature is of little assistance in informing the activities of this Workgroup about handling 
Facility-Level, Organization-Level, Care-Setting Level, and Temporal-Level Missingness. Third, the 
complexities of reasons for missing laboratory results data deserve thoughtful discussion during analysis 
planning. The assumption of MCAR, a requirement for unbiased complete case analyses, rarely holds for 

                                                           
1 This paper is not included in the number of articles identified during the search period through June 2014 (i.e., is 
not included in information in the Tables) because it was published after June 2014. It was available to the 
Workgroup as a draft manuscript at the time the literature search was conducted. 
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missing laboratory results data. MAR patterns may be found but are expected to be difficult to confirm 
with missing laboratory results data. Whether there is evidence of a strong MNAR pattern should be 
considered.  

4. Missing data techniques used for laboratory results data 

As mentioned previously (Table 2), we identified 37 articles that used at least one missing data 
technique. The technique applied in the analyses used in each of these papers is shown in Table 3.  

Table 3. Types of Missing Data Techniques used for Missing Laboratory Test Results in 37 Studies 
Missing Data Technique  

(Number of Studies) 
Reference(s) Application of Technique b 

Independent variable(s) Dependent 
variable 

Confounder Exposure  Predictive 
Model 

Outcome 
Identification 

Multiple imputation (MI) c      

  MI by joint modeling (10) 19, 20, 30, 33, 36-41 6  4  

  MI by Fully Conditional Specification (7) 27, 42-47  2 4 1 

  MI with predictive mean matching (3) 48-50 2   1 

  Unspecified MI type (7) 29, 51-56  2 4 1 

Missing category (4) 39, 56-58 2 2   

Mean/median substitution for missing (3) 27, 43, 57 1 1 1  

Last observation carried forward (3) 24, 59, 60    3 

Inverse probability weighting (2) 45, 61    2 

Propensity score calibration (1) 30 1    

Regression (single value predicted) (1) 21    1 

Hot Deck imputation (1) 58 1    

Pattern mixture model (1) 60    1 

Other (6) 30, 33, 42, 43, 62, 63 1 1 3 1 
a Do not total to 37 because some studies applied more than one technique 
b Only 2 articles used laboratory results for cohort identification; neither used a missing data method 

c Limited statistical information on details of MI in some articles; specific types of imputation methods noted only if 
specifically stated by authors, remainder categorized as Unspecified MI type 

More detailed information about all 37 studies, such as the study designs, populations, laboratory test 
result(s) studied, % missing, missing data method used, and whether the authors described the 
missingness mechanism, is provided in the project-specific relational database (Appendix C). 

a. Selected examples of applications of missing data techniques 

Twenty-two of the 37 articles analyzed the data using more than one method. Most often this occurred 
when a missing data analysis method was used in addition to a complete case analysis (12 of 22; 55%). 
Several articles used the complete case analyses for the primary result while employing a missing data 
technique in secondary analyses to confirm results remained consistent.29, 40, 42, 48 Raebel et al42 
examined predictors of antihyperglycemic drug initiation using complete case analyses but also 
completed MI analyses to confirm results remained unchanged if persons with missing smoking, race, or 
serum creatinine test results at baseline were included. To further confirm missing covariates were not 
overly influential, they also completed sensitivity analyses that assigned values for missing covariates to 
the category with the largest effect, or the least effect, as well as the most common referent category 
while observing impacts on the relative risk estimates. In contrast, other authors reported primary 
analyses using a missing data technique while using complete case analysis for sensitivity analyses.38, 41, 
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59 For example, Nakano et al41 presented primary analyses with MI and used complete case analyses for 
sensitivity checks.  

A few authors more fully presented results from two or more missing data methods. For example, Harris 
et al45 presented adjusted results for models using both inverse probability treatment weights and MI to 
retain the 54% of their population who were missing HbA1c result values. They believed fully reporting 
the similar results obtained from both methods supported the validity of their inferences. However, 
most authors that fully presented results using two or more different missing data methods did so to 
teach or encourage use of the method. Examples include:  

 Mulla et al37 sought to encourage use of MI through demonstration of the technique. They 
presented models predicting an outcome of hospital mortality in a population where serum 
albumin was available only for 55% of the cohort. Models were run for complete case analyses 
(N=110) and a full dataset (N=201) with serum albumin imputed using MI. Higher serum albumin 
was similarly protective in both the complete case and MI models; however age 55 years or older 
(compared to age 0 – 54 years) was not a risk factor for hospital mortality in the complete case 
analysis (adjusted odds ratio [OR] 2.43, 95% confidence interval [CI] 0.79-7.53), but was a 
significant risk factor in the imputed cohort (OR 3.08, 95% CI 1.22 – 7.78).  

 Faries and colleagues30 examined three analytic methods to adjust for HbA1c when it was only 
available for 25% of their cohort. Their analyses examined Bayesian modeling, propensity score 
(PS) calibration, and MI. Adjustments for baseline HbA1c using Bayesian modeling and MI 
provided similar results and neither was far from the result of the original analyses, suggesting 
the added adjustment had a limited impact. They noted that the assumptions for PS calibration 
were questionable in their analyses because the subsample with HbA1c was not random and the 
estimated PS were not independent of the outcome after accounting for the subsample PS and 
treatment. Nevertheless, results remained reasonably similar to the other two methods. 

b. Precision versus accuracy in missing data techniques 

Comparing different missing data techniques can provide some information as to whether answers are 
similar or different (precision), but it can be difficult to ascertain which answer is closest to the truth 
(accuracy). To circumvent this issue, some studies have created missing data.  

 Siew and colleagues27 examined different methods of accounting for missing baseline serum 
creatinine results values in models predicting Acute Kidney Injury (AKI). They first created models 
predicting which patients had missing data and used those models to identify similar patients 
among persons with serum creatinine results values available. Removing creatinine values for 
those patients gave them MAR data which they analyzed using both a single imputation and an 
MI method. The availability of actual laboratory results values allowed them to compare mean 
differences between the imputed and actual results as well as to contrast differences in the 
prediction of AKI (although artificially creating missingness does not necessarily reflect real-world 
patterns of missing data). They concluded MI generally improved accuracy of predicting AKI.  

 Using somewhat similar methods, Walijee and colleagues43 randomly removed laboratory results 
data from a dataset with varying frequencies and compared accuracy of imputations using simple 
mean imputation, imputation by nearest neighbor, MI by Fully Conditional Specification (FCS; 
also known as chained equations) and imputation using random forest models. They reported 
random forest methods had the lowest imputation error and the smallest prediction differences 



 
  
 

 
 

Statistical Methods - 17 -  Analytic Methods for Using Laboratory Test Results 

when imputed laboratory values were used. MI with FCS had the second lowest imputation error 
and prediction differences, while larger discrepancies were seen for nearest neighbor and mean 
imputation. They acknowledged that limitations to the random forest models were a 
requirement for skilled R programming for implementation and higher computational needs 
compared to the MI by FCS.  

c. Multiple imputation approaches 

MI is a relatively common missing data technique that starts with the observed incomplete data and 
then creates multiple complete versions of the data by replacing missing data with varying plausible 
values. Several different imputation methods exist, e.g., MI by joint modeling, by fully conditional 
specification, and with predictive mean matching. Predictive mean matching is one MI method that 
ensures the replacements reflect observed data values. We located three articles using predictive mean 
matching.48-50 Morris and colleagues49 contrasted predictive mean matching to local residual draws in 
extensive simulations as well as in an example with missing albumin data in models predicting time to 
death among persons with ovarian cancer. In their data example, the model results were comparable for 
replacements using predictive mean matching versus the related method of local residual draws. Their 
simulations also showed these two imputations methods performed better than parametric imputation 
when the imputation model was mis-specified but results were still poor for mis-specified models for all 
methods, particularly when missing covariates were strongly associated with the outcome. 

d. Missing not at random concerns 

Although articles describing missing laboratory results data suggest some patterns that may not be 
missing at random (MNAR), we found no articles employing missing data techniques better able to 
account for MNAR patterns when analyzing missing laboratory results data. The literature search 
identified one methods article that employed pattern mixture models to examine missed visits that 
resulted in interval-censoring of total bilirubin outcomes.60 While it is possible we could have missed 
applied articles using MNAR techniques in our search, it seems appropriate to conclude that there likely 
has been very limited use of such techniques. 

V. CONSIDERATIONS OF A TWO PHASE DESIGN APPROACH WITH MISSING 
LABORATORY DATA IN MINI-SENTINEL 

While not a part of this literature review activity, the report from a previous Mini-Sentinel Methods 
Workgroup, the Two-Phase Sampling Workgroup (www.sentinelinitiative.org/sentinel/methods/327) 
was reviewed and discussed to determine relevance to this missing laboratory results data methods 
project. This previous Workgroup considered the use of Two-Phase designs for Mini-Sentinel medication 
safety surveillance activities.  

The work of a two-phase design entails using phase 1 data, the information available on everyone, to 
identify a phase two targeted subgroup for collection of supplemental confounder information from 
alternative sources such as medical records. That Workgroup’s report primarily focused on the collection 
of supplemental confounder data using a Two-Phase design, but also discussed using such a design for 
exposure and outcome ascertainment. A necessary step in the development of a Two-Phase design is to 
create an investigator-designed, probability-sampled sub-cohort that can be used to collect additional 
confounder information (i.e., in phase 2) via supplemental means such as chart review. Phase 2 findings 

http://www.sentinelinitiative.org/sentinel/methods/327
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are then translated to the entire cohort on the basis of the investigator-designed probability sampling. 
The investigator can substantially reduce the risk of selection bias in the sub-cohort using such methods, 
in part because the sampling probabilities are known to them.  

The Two-Phase Workgroup’s authors make a careful distinction between this deliberate sampling 
scenario used with a Two-Phase design and what they termed ‘opportunistic’ supplemental data 
collection wherein investigators take advantage of electronic data available at some, but not all, DPs. As 
those authors note, laboratory data fits this definition of opportunistic data. Unlike the probabilistic, 
deliberate nature of the sampling and data collection in a Two-phase design, a cohort with opportunistic 
data have those data available for reasons that may not be known by the investigator, thus there is an 
increased risk of selection bias. Opportunistic data may exist for reasons unknown to, and beyond the 
control of, the investigator. For example, opportunistic data may be linked to care delivery methods 
(e.g. fee for service vs. managed care), patient mix, and structural and financial issues such as payment 
and carve-outs, etc. Thus, much of the findings and recommendations from the Two-phase report are 
not directly transferrable to Laboratory Methods Workgroup when using opportunistic data. However, 
the completeness of potential confounders available in phase one data regarding the information 
available on everyone is critical in providing an unbiased approach to identify the phase two targeted 
subgroup. To the degree that a study design utilizes laboratory data either coded procedures and/or 
availability of a laboratory test result to subset the population for phase two, the imputation methods 
employed by the Laboratory Analytic Methods Workgroup may inform the sampling strategies 
employed in Two-phase studies. 

There are scenarios under which the findings from the Two-Phase Workgroup are directly transferable 
to the Laboratory Analytic Methods Workgroup: 

 When laboratory results are not available electronically from any Data Partners; this might be a 
specialty test that is done only at facilities with particular equipment, perhaps some forms of 
genetic testing. In those cases a Two-Phase design could be used, with the laboratory data being 
obtained in the second phase using primary data collection. 

 The design of a two-phase study may enhance the ability to confirm findings in employing 
imputation methods. While one would likely not need to perform a validation study confirming 
that an electronically recorded laboratory test result matches a value in a patient’s chart, the 
characterization of the mechanism of missingness of a laboratory result (e.g., test not performed 
versus test performed but recorded into a faxed document) could be aided by chart review of a 
subset of the population with missing measurements. Observational study designs make certain 
assumptions such as new users of an oral antidiabetic agent will receive frequent healthcare and 
regular laboratory monitoring. However, electronically missing laboratory procedures or results 
may not be an indicator of poor care but reflect the underlying nature of medical documentation 
in the setting or the extent of access to the source laboratory results data. The characterization 
and imputation methods employed by the Laboratory Analytic Methods Workgroup could be 
followed up with a two-phase approach to sample charts of imputed patients to confirm 
strategies. 

Characterizing the population as part of the imputation methods employed in the activity of the 
Laboratory Analytic Methods Workgroup helps inform the selection bias noted in “opportunistic” 
sampling noted in the two-phase report. Thus the characterization of missing laboratory data may 
provide clarity to the question of why data are available for certain people and not others. There are 
methodological challenges in utilizing already collected data in opportunistic sampling as which and how 
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many people to sample is not chosen by the investigator but by the data available and the distribution 
of data may or may not target the informative people. 

VI. APPLICATION OF MISSING LABORATORY DATA EXAMPLES FROM PUBLISHED 
LITERATURE TO MINI-SENTINEL 

This literature review focused on published articles most likely to inform future Mini-Sentinel analyses. 
We did not include articles where missing clinical results data would be prospectively minimized (e.g., 
studies with direct data capture or closely monitored clinical trials). In this literature review of 
observational database studies, few studies included very large populations or included multiple sites. 
As a result, applying information from the articles identified in the literature review to Mini-Sentinel 
activities must be done cautiously. However, given this caution, MI methods emerged as important 
candidates for Mini-Sentinel work, particularly given the depth of prior methodological work and 
increasing availability in software packages. From our review, it is also clear that methods with known 
limitations, such as simple mean or median replacement of missing values that result in inappropriately 
small standard errors, should not be considered for Mini-Sentinel activities.  

VII. EVALUATION OF ANALYTIC METHODS FOR INCORPORATING LABORATORY 
TEST RESULTS DATA IN MINI-SENTINEL MEDICAL PRODUCT SAFETY ANALYSES 

A. GENERAL PROCESS FOR TESTING THE FUNCTIONING AND COMPUTATIONAL 
PERFORMANCE OF THE MISSING DATA ANALYTIC APPROACHES 

Missing data approaches have been extensively detailed for decades in books and articles and new 
methods continue to be developed. For this project that included assessing the performance of missing 
data analytic approaches primarily within the context of test cases that employ laboratory test results 
data we selected methods that could be readily implemented using available software. For the Baseline 
Confounder Test Cases, more than one missing data method was implemented for each test case, with 
some methods repeated across test cases to aid interpretation and understanding of the impact of 
missing data approaches on the analysis. For all test cases, we decided on missing data techniques after 
viewing descriptions of missing data in the test case cohort and considering options. We first 
investigated predictors of missing laboratory test results values overall and by site. In test case outcome 
models, we typically compared results across a) analyses that did not include laboratory results at all, b) 
analyses that only included available laboratory results (i.e. complete case analyses), and c) analyses 
that accounted for missing laboratory results using varying techniques. Our primary comparisons were 
the estimated coefficients and 95%CI for the exposures of interest. One question that we answered for 
each test case was whether including laboratory results made any difference. If the missing data analytic 
method did make a difference, we determined the ways in which the results varied by method. In 
addition, the ease of implementation and the plausibility of assumptions were taken into account when 
making recommendations. 
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B. SELECTION OF SPECIFIC TEST CASES 

Given that the sources of laboratory test result missingness could vary across different laboratory test 
types, a predefined goal in selecting test cases was to develop generalizable information (i.e., 
information not just useful for one laboratory test). Test cases were also selected based on topics 
identified by the FDA as of interest and relevance to Mini-Sentinel activities (e.g., PROMPT, Clinical Data 
Elements, and other Workgroups); test cases were chosen in consultation with the FDA investigator 
members of the Workgroup. Further, the test cases were selected based on laboratory test types that 
are available in the LRT. 

Importantly, the Workgroup selected test cases expected to represent different missing data issues. For 
example, an outcome test case was chosen to enable assessment of the absence of inpatient data for an 
outcome usually associated with an emergency department visit or hospitalization. A baseline 
confounder adjustment test case was chosen to enable assessment of incomplete outpatient data 
capture such as for an ambulatory laboratory test that was anticipated to have differential results 
missingness across DPs. Another test case was chosen to represent LRT data expected to have the 
minimum possible missing data issues. Such a scenario was important to include as it potentially 
represents the “best case.” In Table 4 we list the medical product-outcome pair test cases selected to 
assess in this activity.  

Table 4. Selected Medical Product-Outcome Pairs Test Cases 
Laboratory Test Result Medical Product Exposure Outcome Expected Main Missing Data Issue(s)/ 

Expected Availability in Mini-Sentinel 
Distributed Database 

Baseline Confounder Adjustment 

Baseline Confounder Test 
Case 1: Baseline HbA1c or 
fasting blood glucose or 
random blood glucose 
(composite variable 
“GLU”) 

Second generation 
antipsychotic (SGA) newly-
started in adults who do 
not have a diabetes 
diagnosis 

Diabetes 
diagnosis 

Patient or provider non-adherence to 
recommended laboratory monitoring; 
organization-level differential missingness 
by data partner type; potentially some of 
laboratory test types with least missing 
data because often routinely obtained as 
part of usual care 

Baseline Confounder Test 
Case 2: Baseline serum 
creatinine in patients with 
diabetes starting an 
angiotensin converting 
enzyme inhibitor (ACEi) 

Angiotensin converting 
enzyme inhibitor (ACEi) 
initiation in patients with 
existing diabetes diagnosis 

Hyperkalemia 
diagnosis a 

Organization-level differential missingness 
by data partner type; patient or provider 
non-adherence to recommended 
laboratory monitoring; potentially one of 
the laboratory test types with the least 
missing data because often routinely 
obtained as part of usual care 

Baseline Confounder Test 
Case 3: Baseline INR in 
current warfarin users 
starting an antimicrobial 
medication 

Antibiotic initiation in 
patients taking warfarin 
chronically 

Bleeding 
diagnosis 

Organization-level differential missingness 
by data partner type; potentially one of the 
laboratory test types with the least missing 
data because routinely indicated in cohort 
patients taking warfarin 

Cohort Identification 

Cohort Identification Test 
Case 1: Enhanced 
identification of a 
pregnancy cohort: Use of 
positive qualitative or high 
quantitative pregnancy 
test results  

Not required Not required Patient-level missingness (e.g., selective 
assessment correlated with high risk 
pregnancy) 
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Laboratory Test Result Medical Product Exposure Outcome Expected Main Missing Data Issue(s)/ 
Expected Availability in Mini-Sentinel 

Distributed Database 

Cohort Identification Test 
Case 2: Enhanced 
identification of a cohort 
of adults with Chronic 
Kidney Disease (CKD): Use 
of serum creatinine 
laboratory results data to 
estimate patients’ 
glomerular filtration rate 

Not required Not required Organization-level differential missingness 
by data partner type; patient or provider 
non-adherence to recommended 
laboratory monitoring; potentially one of 
the laboratory test types with the least 
missing data because often routinely 
obtained as part of usual care 

Outcome Detection 

Outcomes Detection Test 
Case 1: Diabetes and 
blood glucose or 
glycosylated hemoglobin 
laboratory test results 
values outcomes among 
adults initiating an SGA 

SGA newly-started in 
adults 

Hyperglycemia 
or diabetes 
diagnosis 
and/or 
elevated 
HbA1c, random 
glucose, or 
fasting glucose 
test results 

Patient or provider non-adherence to 
recommended laboratory monitoring; 
organization-level differential missingness 
by data partner type; potentially some of 
the laboratory test types with the least 
missing data because often routinely 
obtained as part of usual care 

Outcomes Detection Test 
Case 2: Upper 
gastrointestinal bleeding 
and hemoglobin (Hgb) 
laboratory test results 
value outcomes among 
adults initiating a non-
steroidal anti-
inflammatory drug (NSAID) 

NSAIDS Acute 
gastrointestinal 
bleeding 
diagnosis 
and/or low Hgb 
test results 

Care setting level missingness (patient 
location where laboratory testing was 
conducted and absence of hospital and 
emergency department laboratory test 
results) 

a Serum potassium result values not in Mini-Sentinel Distributed Database 

C. DATA PARTNER INVOLVEMENT AND DATA DEVELOPMENT APPROACH 

Three representative Data Partners provided data for test cases. These Data Partners included one 
smaller integrated delivery system (“site 1”), one larger integrated delivery system (“site 2”), and one 
large national insurer (“site 3”). Sites 1 and 2 provide care delivery and insurance for their members, 
employ an electronic health record in all ambulatory medical offices where laboratory test orders and 
results are recorded as part of the care process, have laboratory facilities in each medical office, and 
have integrated laboratory results databases. Sites 1 and 2 have administrative claims data, and have 
access to outpatient and inpatient laboratory test results. Site 2 also has access to emergency 
department laboratory test results. Site 3 provides insurance only, augmenting its administrative claims 
data by contracting with some national laboratory service vendors to obtain clinical laboratory test 
results for its enrollees. At the time of this project, the sites’ enrollments ranged from about 500,000 to 
many million. Site 3 has a larger proportion of older enrollees than do Sites 1 or 2.  

Each test case essentially was a separate cohort study. The Mini-Sentinel Cohort Identification and 
Descriptive Analysis (CIDA) tool was employed for test case development whenever feasible. Because 
some test cases employed the CIDA tool and others could not, the sequence of applying inclusion and 
exclusion criteria across the cohorts in the separate test cases differed. Additional distributed 
programming code to extract data for the test cases was written at Kaiser Permanente Colorado (KPCO), 
the lead site for this activity. The programming code written at KPCO was tested and quality-checked in 
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accordance with Mini-Sentinel policies and procedures. All distributed code was sent to the participating 
Data Partners according to Mini-Sentinel policies and procedures. Data partner sites executed the work 
plans against their MSDD data and returned the resulting site-specific test case datasets to the Mini-
Sentinel Operations Center and KPCO where the datasets from the participating sites were combined to 
yield one analytic dataset for each test case. The combined datasets were quality checked and the data 
described. 

D. BASELINE CONFOUNDER TEST CASES 

The purpose of the Baseline Confounder Test Cases was to identify analytic strategies that enable 
inclusion of laboratory test result data into medical product safety analyses for improved confounding 
control within the MSDD. This included identifying missing data analytic issues across laboratory test 
types as well as availability and nature of missingness of laboratory results and whether and how 
analytic strategies might need to differ by type of laboratory test result. Strategies such as selected 
sensitivity analyses were also considered.  

1. Baseline Confounder Test Case 1: Baseline HbA1c/glucose in new adult users of a second 
generation antipsychotic and risk of diabetes 

a. Baseline Confounder Test Case 1 cohort development 

Second generation antipsychotic (SGA) agents are prescribed to aid in treatment of schizophrenia and 
other mental health disorders. Known risks with SGA include weight gain and the potential for 
developing metabolic disorders such as diabetes mellitus.64 These risks are considered to differ across 
individual SGA.65 Because studies have found worsening glucose control and new-onset diabetes during 
treatment with SGAs66-68 obtaining a glucose laboratory test result at initiation of therapy is important to 
establish whether glucose control is normal or impaired at baseline.  

The underlying premise of Test Case 1 was that FDA might wish to compare the risk of new-onset 
diabetes among users of different SGAs, with baseline glucose value as a potential confounder. This test 
case examined models that included adjustment for baseline blood glucose result value in analyses 
comparing initiation of several SGAs and an outcome of diagnosed diabetes. As with all test cases in this 
report, blood glucose result values were not consistently available; the primary goal was to describe 
varied methods of dealing with the missing laboratory test results data. Additional detail on the research 
questions and the cohort are provided below. 

 Research Questions 

 Does inclusion of a baseline GLU (random glucose, fasting glucose, or HbA1c) laboratory test 
result value (imputed when missing) reduce the potential bias when modeling the 
associations between specific SGA exposure and risk of diabetes outcome in the MSDD?  

 Does inference about the relationship between specific SGA exposure and risk of diabetes 
outcome differ when controlling for the GLU laboratory test result under two different 
imputation methods (regression and predictive mean matching)? 

 Does inference differ if the data from all 3 sites are pooled and analyzed (both for imputation 
and the outcome model) versus if the analysis is done at each site separately, with the results 
combined using meta-analysis? 
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As detailed in Figure 1, this test case included persons aged > 21 years who initiated an SGA between 
July 1, 2008 and October 31, 2012. We identified new users by requiring a minimum of six months 
enrollment prior to the first dispensing of an SGA. To examine the outcome of a new diagnosis of 
diabetes within one year, we selected persons without a history of pre-existing diabetes and additionally 
excluded women with conditions that impact glucose levels (pregnancy, polycystic ovarian syndrome). 

Figure 1. Test Case Cohort for Baseline Confounder Adjustment Test Case 1, Initiation of Second 
Generation Antipsychotics and Missingness of Blood Glucose/HbA1c Laboratory Test Results* 
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b. Baseline Confounder Test Case 1 descriptive analysis of missing laboratory results 

Detailed descriptions of the cohort by SGA and by site are in Tables 5 and 6. Overall, the most common 
SGA used was quetiapine (48%), followed by risperidone (24%), with lowest use for olanzapine (11%). 
Drug use varied by site. For example, site 2 had the strongest predominance of quetiapine use while 
quetiapine and risperidone were used with comparable frequency at site 1. The cohort averaged 60 
years of age and 62% were female. During the year following SGA initiation, 5.3% developed diabetes (as 
defined using diabetes diagnosis codes and anti-diabetic medication dispensing); rates were similar by 
type of SGA (range: 4.6% to 6.1%). Forty-one percent of the cohort had at least one baseline laboratory 
test result for glucose or HbA1c with moderate differences by SGA type (33.9% to 43.5%). 

Availability of laboratory tests was disparate by site (Table 6). Although Current Procedural Terminology 
(CPT) codes suggested similar rates of testing across sites, test results were only available for 27.7% of 
site 3 cohort members versus 58.0-58.9% for sites 1 and 2. In addition, at site 3 nearly all glucose results 
were classified as random because of unknown fasting status. Because of this, we combined fasting and 
random glucose values at all three sites. We additionally confirmed that ~90% of those with HbA1c also 
had a baseline glucose result available and we used only glucose results in analyses. 

Table 5. Characteristics of Individuals in the Baseline Confounder Test Case 1 Population: Initiation of 
Second Generation Antipsychotics and Missingness of Blood Glucose Laboratory Test Results 

Characteristics Second Generation Antipsychotic (SGA) 

Aripiprazole 
N=14,588 
(17.5%) 

Olanzapine 
N=9094  
(10.9%) 

Quetiapine 
N=40,200  
(48.2%) 

Risperidone 
N=19,609 
(23.5%) 

Total 
N=83,491 

Female sex 10,204 (69.9) 5284 (58.1) 24,408 (60.7) 11,993 (61.2) 51,889 (62.1) 

Age in years, mean (SD) 50.1 (15.6) 61.1 (20.2) 62.1 (20.5) 64.2 (20.9) 60.4 (20.4) 

Year of cohort entry      

  2008 1818 (12.5) 1374 (15.1) 5210 (13.0) 2448 (12.5) 10,850 (13.0) 

  2009 3877 (26.6) 2106 (23.2) 9138 (22.7) 4446 (22.7) 19,567 (23.4) 

  2010 3425 (23.5) 1878 (20.7) 8902 (22.1) 4423 (22.6) 18,628 (22.3) 

  2011 2838 (19.5) 1900 (20.9) 8939 (22.2) 4397 (22.4) 18,074 (21.7) 

  2012 (1/1 – 10/31) 2630 (18.0) 1836 (20.2) 8011 (19.9) 3895 (19.9) 16,372 (19.6) 

Site      

  1 459 (3.2) 228 (2.5) 1564 (3.9) 1600 (8.2) 3851 (4.6) 

  2 5320 (36.5) 3557 (39.1) 16,986 (42.3) 5756 (29.4) 31,619 (37.8) 

  3 8809 (60.4) 5309 (58.4) 21,650 (53.9) 12,253 (62.5) 48,021 (57.5) 

Outcome: diabetes diagnosis 
after SGA initiation a 666 (4.6) 479 (5.3) 2091 (5.2) 1197 (6.1) 4433 (5.3) 

Baseline confounder: any blood 
glucose result (fasting or 
random glucose, HbA1c) 

4949 (33.9) 3970 (43.7) 17,484 (43.5) 8022 (40.9) 34,425 (41.2) 

  Fasting glucose 1505 (10.3) 892 (9.8) 3973 (9.9) 1631 (8.3) 8001 (9.6) 

  Random glucose 3712 (25.4) 3492 (38.4) 15,020 (37.4) 6945 (35.4) 29,169 (34.9) 

  HbA1c b 767 (5.3) 506 (5.6) 2178 (5.4) 1065 (5.4) 4516 (5.4) 

Baseline procedure code 
(Glucose CPT code) 

4344 (29.8) 4595 (50.5) 17,521 (43.6) 8365 (42.7) 34,825 (41.7) 

Hispanic ethnicity (Y vs N or 
unknown) 728 (5.0) 524 (5.8) 2378 (5.9) 1165 (5.9) 4795 (5.7) 

Race 

  White 9258 (63.5) 6376 (70.1) 29,702 (73.9) 14,355 (73.2) 59,691 (71.5) 

  Black 702 (4.8) 680 (7.5) 2936 (7.3) 1949 (9.9) 6267 (7.5) 

  Other 469 (3.2) 477 (5.2) 1413 (3.5) 790 (4.0) 3149 (3.8) 
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Characteristics Second Generation Antipsychotic (SGA) 

Aripiprazole 
N=14,588 
(17.5%) 

Olanzapine 
N=9094  
(10.9%) 

Quetiapine 
N=40,200  
(48.2%) 

Risperidone 
N=19,609 
(23.5%) 

Total 
N=83,491 

  Unknown 4159 (28.5) 1561 (17.2) 6149 (15.3) 2515 (12.8) 14,384 (17.2) 

Number of unique medication 
classes dispensed during 
baseline, mean (SD) 10.8 (4.8) 9.8 (5.3) 10.1 (4.9) 9.5 (4.8) 10.1 (4.9) 

Number of ambulatory medical 
visits during baseline, mean 
(SD) 13.0 (15.3) 15.0 (18.4) 14.7 (19.2) 13.6 (16.4) 14.2 (17.9) 

Emergency department visit 
during baseline, N (%) yes 3785 (25.9) 4192 (46.1) 16,190 (40.3) 7698 (39.3) 31,865 (38.2) 

Hospitalization during baseline, 
N (%) yes 1873 (12.8) 3322 (36.5) 11,287 (28.1) 5698 (29.1) 22,180 (26.6) 

Institutional stay during 
baseline, N (%) yes 2030 (13.9) 2554 (28.1) 9271 (23.1) 5090 (26.0) 18945 (22.7) 

Comorbidity score, mean (SD) c 1.2 (1.5) 2.3 (2.6) 2.0 (2.4) 2.2 (2.4) 1.9 (2.3) 

Gagne et al individual comorbidities c 

  Alcohol abuse 905 (6.2) 773 (8.5) 3649 (9.1) 1340 (6.8) 6667 (8.0) 

  Anemia, deficiency 1245 (8.5) 1619 (17.8) 6314 (15.7) 3274 (16.7) 12,452 (14.9) 

  Arrhythmia 812 (5.6) 1471 (16.2) 6077 (15.1) 3104 (15.8) 11,464 (13.7) 

  Coagulation disorder 170 (1.2) 338 (3.7) 1251 (3.1) 587 (3.0) 2346 (2.8) 

  Congestive heart failure 533 (3.7) 1119 (12.3) 4501 (11.2) 2430 (12.4) 8583 (10.3) 

  Diabetes, complicated d < 6 (0.0) 8 (0.1) 33 (0.1) 16 (0.1) 62 (0.1) 

  Dementia 446 (3.1) 1629 (17.9) 7893 (19.6) 5106 (26.0) 15,074 (18.1) 

  Fluid/Electrolyte disorders 961 (6.6) 1877 (20.6) 6578 (16.4) 3286 (16.8) 12,702 (15.2) 

  HIV/AIDS 69 (0.5) 36 (0.4) 178 (0.4) 51 (0.3) 334 (0.4) 

  Hypertension 4428 (30.4) 4274 (47.0) 19,070 (47.4) 9900 (50.5) 37,672 (45.1) 

  Hemiplegia 126 (0.9) 163 (1.8) 738 (1.8) 333 (1.7) 1360 (1.6) 

  Liver disease 335 (2.3) 282 (3.1) 1133 (2.8) 450 (2.3) 2200 (2.6) 

  Metastatic cancer 79 (0.5) 308 (3.4) 663 (1.6) 238 (1.2) 1288 (1.5) 

  Psychosis 10,083 (69.1) 5345 (58.8) 19,807 (49.3) 11,394 (58.1) 46,629 (55.8) 

  Pulmonary disease, chronic 2178 (14.9) 1910 (21.0) 7579 (18.9) 3877 (19.8) 15,544 (18.6) 

  Pulmonary circulation 
disorder 93 (0.6) 183 (2.0) 804 (2.0) 419 (2.1) 1499 (1.8) 

  Peripheral vascular disease 549 (3.8) 953 (10.5) 4023 (10.0) 2255 (11.5) 7780 (9.3) 

  Renal failure 458 (3.1) 885 (9.7) 3961 (9.9) 2336 (11.9) 7640 (9.2) 

  Tumor, any 562 (3.9) 863 (9.5) 2909 (7.2) 1391 (7.1) 5725 (6.9) 

  Weight loss 140 (1.0) 491 (5.4) 1374 (3.4) 610 (3.1) 2615 (3.1) 

Additional comorbidities specific to baseline confounder test case 1 

  Myocardial infarction 281 (1.9) 436 (4.8) 2031 (5.1) 1010 (5.2) 3758 (4.5) 

  Ischemic stroke 414 (2.8) 692 (7.6) 3072 (7.6) 1709 (8.7) 5887 (7.1) 

  Intracranial hemorrhage 50 (0.3) 134 (1.5) 611 (1.5) 244 (1.2) 1039 (1.2) 

  Osteoarthritis 1769 (12.1) 1619 (17.8) 7418 (18.5) 3675 (18.7) 14,481 (17.3) 

  Depression 10,137 (69.5) 4693 (51.6) 20,393 (50.7) 9478 (48.3) 44,701 (53.5) 
a Within 365 days after the cohort entry date 
b HbA1c results were not considered for imputation because ~90% of those with HbA1c also had either a fasting or a random 
baseline glucose result 

c Determined over the 183 days prior to the cohort entry date; Gagne et al (REF) 
d Diabetes at baseline was an exclusion for Baseline Confounder Test Case 1 and therefore not included for this Test Case  
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Table 6. Characteristics of Individuals in the Baseline Confounder Test Case 1 Population: Initiation of 
Second Generation Antipsychotics by Data Partner Site 

Characteristics Data Partner Site 

Site 1 
N=3851 (4.6%) 

Site 2 
N=31,619 (37.9%) 

Site 3 
N=48,021 (57.5%) 

Outcome: diabetes diagnosis after SGA initiation a 170 (4.4) 1515 (4.8) 6268 (13.1) 

Any blood glucose laboratory test result (fasting or 
random glucose, HbA1c)  

2232 (58.0) 18,892 (59.8) 13,301 (27.7) 

Fasting glucose result available 644 (16.7) 7187 (22.7) 170 (0.4) 

Random glucose result available 1856 (48.2) 14,281 (45.2) 13,032 (27.1) 

HbA1cbresult available 135 (3.5) 2516 (8.0) 1865 (3.9) 

Female sex  2451 (63.6) 19,639 (62.1) 29,799 (62.1) 

Age in years, mean (SD) 55.6 (21.1) 55.2 (21.1) 64.2 (19.0) 

Year of cohort entry    

  2008 479 (12.4) 4437 (14.0) 5934 (12.4) 

  2009 878 (22.8) 7363 (23.3) 11,326 (23.6) 

  2010 866 (22.5) 7047 (22.3) 10,715 (22.3) 

  2011 909 (23.6) 6859 (21.7) 10,306 (21.5) 

  2012 (1/1 – 10/31) 719 (18.7) 5913 (18.7) 9740 (20.3) 

Race    

  White 2878 (74.7) 23,709 (75.0) 33,104 (68.9) 

  Black 142 (3.7) 2715 (8.6) 3410 (7.1) 

  Other 88 (2.3) 2501 (7.9) 560 (1.2) 

  Unknown 743 (19.3) 2694 (8.5) 10,947 (22.8) 

Hispanic ethnicity (Y vs N or unknown) 304 (7.9) 3633 (11.5) 858 (1.8) 

Baseline procedure code (Glucose or HbA1cb CPT code) 1825 (47.4) 12,239 (38.7) 20,761 (43.2) 

Number of unique medication classes dispensed, mean 
(SD)c 

9.1 (4.7) 9.3 (4.8) 10.7 (5.0) 

Number of ambulatory medical visits during baseline, 
mean (SD)c 

6.7 (6.5) 11.1 (18.1) 16.8 (17.8) 

Emergency department visit during baseline, N (%) yes c 1366 (35.5) 14,693 (46.5) 15,806 (32.9) 

Hospitalization during baseline, N (%) yes c 987 (25.6) 8725 (27.6) 12,468 (26.0) 

Institutional stay during baseline, N (%) yes c 372 (9.7) 2823 (8.9) 15,750 (32.8) 

Comorbidity Score, mean (SD) c,,d 1.9 (2.1) 1.7 (2.0) 2.1 (2.5) 

Individual comorbidities c,,d    

  Alcohol abuse 444 (11.5) 3517 (11.1) 2709 (5.6) 

  Anemia, deficiency 335 (8.7) 3270 (10.3) 8847 (18.4) 

  Arrhythmia 401 (10.4) 3265 (10.3) 7798 (16.2) 

  Coagulation disorder 102 (2.6) 737 (2.3) 1507 (3.1) 

  Congestive heart failure 265 (6.9) 2001 (6.3) 6317 (13.2) 

  Diabetes, complicated d NA NA NA 

  Dementia 553 (14.4) 2969 (9.4) 1152 (24.1) 

  Fluid/Electrolyte disorders 600 (15.6) 3574 (11.3) 8528 (17.8) 

  HIV/AIDS 7 (0.2) 142 (0.4) 185 (0.4) 

  Hypertension 1188 (30.8) 10,800 (34.2) 25,684 (53.5) 

  Hemiplegia 37 (1.0) 343 (1.1) 980 (2.0) 

  Liver disease 104 (2.7) 911 (2.9) 1185 (2.5) 

  Metastatic cancer 31 (0.8) 549 (1.7) 708 (1.5) 

  Psychosis 2831 (73.5) 20,364 (64.4) 23,434 (48.8) 

  Pulmonary disease, chronic 597 (15.5) 4900 (15.5) 10,047 (20.9) 

  Pulmonary circulation disorder 100 (2.6) 363 (1.10 1036 (2.2) 

  Peripheral vascular disease 176 (4.6) 1823 (5.8) 5781 (12.0) 

  Renal failure 357 (9.3) 2452 (7.8) 4831 (10.1) 

  Tumor, any 183 (4.8) 1778 (5.6) 3764 (7.8) 
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Characteristics Data Partner Site 

Site 1 
N=3851 (4.6%) 

Site 2 
N=31,619 (37.9%) 

Site 3 
N=48,021 (57.5%) 

  Weight loss 120 (3.1) 819 (2.6) 1676 (3.5) 

Additional comorbidities (specific to test case) 

Myocardial infarction 138 (3.6) 1311 (4.1) 2309 (4.8) 

Ischemic stroke 141 (3.7) 937 (3.0) 4809 (10.0) 

Intracranial hemorrhage 48 (1.2) 313 (1.0) 678 (1.4) 

Osteoarthritic 501 (13.0) 4112 (13.0) 9868 (20.5) 

Depression 2309 (60.0) 17983 (56.9) 24409 (50.8) 
a Within 365 days after the cohort entry date 
b HbA1c results were not considered for imputation because ~90% of those with HbA1c also had either a fasting or a random 
baseline glucose result 
c Determined over the 183 days prior to the cohort entry date; Gagne et al69 
d Diabetes at baseline was an exclusion for Baseline Confounder Test Case 1 and therefore not included for this Test Case 

c. Baseline Confounder Test Case 1 methods to investigate predictors of missing glucose results 
values 

We fit logistic regression models to investigate variables predictive of missing glucose values and how 
that varied by site. In these models, the outcome was missing glucose (yes/no). Predictors included all 
variables shown in Table 6. This modeling was done overall (pooled) and separately by site. The results 
are presented in Table 7. In general, in these multivariable fully-adjusted models, the odds of missing 
glucose were higher for subjects taking aripiprazole relative to other drugs. The odds of missingness 
decreased from 2008 to 2012. For many variables, the ORs were similar across sites. However, 
exceptions such as sex (OR men vs women less than 1 in site 2 and greater than 1 in site 3), Hispanic 
ethnicity and intracranial hemorrhage (large OR in site 1 and small OR in site 2) were noted. 

Table 7. Baseline Confounder Test Case 1, Initiation of Second Generation Antipsychotics and 
Missingness of Glucose Results: Adjusted Logistic Regression Models assessing Associations with 
Missing Baseline Glucose Results Overall and by Data Partner Site 

Characteristic a Outcome Missing Glucose (1=missing glucose, 0=has glucose laboratory test result) 
Adjusted Odds Ratio (95% CI) 

All Data Partner Sites 
Combined 

Data Partner Site 

Site 1 Site 2 Site 3 

SGA, Aripiprazole reference 

  Olanzapine 0.81 (0.76, 0.85) 0.63 (0.44, 0.91) 0.83 (0.75, 0.93) 0.99 (0.91, 1.07) 

  Quetiapine 0.77 (0.73, 0.80) 0.74 (0.58, 0.94) 0.93 (0.87, 1.00) 0.89 (0.84, 0.95) 

  Risperidone 0.85 (0.81, 0.90) 0.70 (0.55, 0.89) 0.94 (0.86, 1.02) 0.83 (0.77, 0.89) 

Sex, male vs. female 1.03 (0.99, 1.06) 0.93 (0.79, 1.09) 0.91 (0.86, 0.96) 1.07 (1.02, 1.12) 

Age (per 10 years) 0.95 (0.94, 0.96) 0.87 (0.82, 0.91) 0.86 (0.85, 0.88) 0.99 (0.97, 1.01) 

Outcome: diabetes 
diagnosis after SGA 
initiation 1.16 (1.08, 1.25) 1.05 (0.62, 1.78) 0.89 (0.74, 1.08) 0.86 (0.79, 0.93) 

Year of cohort entry, 2008 reference 

  2009 0.97 (0.93, 1.03) 0.78 (0.61, 1.01) 0.90 (0.82, 0.98) 1.06 (0.98, 1.14) 

  2010 0.85 (0.81, 0.90) 0.65 (0.51, 0.84) 0.88 (0.80, 0.97) 0.86 (0.79, 0.92) 

  2011 0.79 (0.75, 0.83) 0.52 (0.40, 0.67) 0.83 (0.76, 0.91) 0.77 (0.71, 0.83) 

  2012 0.77 (0.73, 0.81) 0.56 (0.43, 0.73) 0.86 (0.79, 0.95) 0.67 (0.62, 0.73) 

Hispanic ethnicity (Y vs 
N or unknown) 0.48 (0.45, 0.52) 0.82 (0.61, 1.11) 1.00 (0.91, 1.10) 0.48 (0.41, 0.56) 

Race, unknown reference 

  White 0.76 (0.72, 0.80) 0.77 (0.63, 0.95) 1.08 (0.97, 1.21) 1.20 (1.12, 1.28) 
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Characteristic a Outcome Missing Glucose (1=missing glucose, 0=has glucose laboratory test result) 
Adjusted Odds Ratio (95% CI) 

All Data Partner Sites 
Combined 

Data Partner Site 

Site 1 Site 2 Site 3 

  Black 0.75 (0.70, 0.80) 1.04 (0.68, 1.59) 1.21 (1.05, 1.39) 1.12 (1.02, 1.24) 

  Other 0.47 (0.43, 0.51) 1.02 (0.61, 1.69) 0.90 (0.78, 1.04) 1.33 (1.08, 1.64) 

Number of baseline 
medication classes 0.97 (0.96, 0.97) 0.94 (0.92, 0.96) 0.97 (0.96, 0.98) 0.96 (0.95, 0.96) 

Number of ambulatory 
medical visits 1.01 (1.01, 1.01) 0.97 (0.96, 0.99) 0.99 (0.99, 0.99) 1.00 (1.00, 1.00) 

Emergency department 
visits (Y vs N) 0.77 (0.76, 0.78) 0.81 (0.74, 0.89) 0.43 (0.41, 0.45) 1.08 (1.05, 1.10) 

Hospitalization (Y vs N) 0.76 (0.74, 0.78) 0.99 (0.84, 1.15) 0.48 (0.44, 0.52) 1.14 (1.10, 1.18) 

Institutional stays (Y vs 
N) 1.42 (1.39, 1.45) 0.49 (0.35, 0.69) 0.80 (0.68, 0.94) 1.11 (1.08, 1.13) 

Gagne et al individual comorbidities 

  Alcohol abuse 0.67 (0.63, 0.71) 1.16 (0.91, 1.48) 0.97 (0.88, 1.07) 0.97 (0.88, 1.07) 

  Anemia, deficiency 0.79 (0.76, 0.83) 0.90 (0.62, 1.30) 0.64 (0.55, 0.73) 0.69 (0.65, 0.73) 

  Arrhythmia 0.92 (0.87, 0.96) 1.08 (0.77, 1.50) 0.74 (0.65, 0.86) 0.97 (0.91, 1.03) 

  Coagulation disorder 0.79 (0.72, 0.87) 0.58 (0.27, 1.23) 0.48 (0.33, 0.70) 0.92 (0.82, 1.04) 

  Congestive heart 
failure 1.19 (1.12, 1.26) 0.72 (0.44, 1.17) 1.05 (0.86, 1.28) 1.07 (1.00, 1.15) 

  Dementia 1.24 (1.19, 1.30) 0.80 (0.61, 1.05) 0.95 (0.84, 1.06) 1.06 (1.00, 1.12) 

  Fluid/Electrolyte 
disorders 1.00 (0.95, 1.05) 0.44 (0.32, 0.59) 0.36 (0.30, 0.44) 1.10 (1.03, 1.17) 

  HIV/AIDS 0.35 (0.27, 0.44) 0.00 (0.00, ) 0.39 (0.25, 0.62) 0.27 (0.20, 0.37) 

  Hypertension 0.77 (0.74, 0.80) 0.60 (0.49, 0.74 ) 0.61 (0.56, 0.65) 0.68 (0.65, 0.72 ) 

  Hemiplegia 
1.02 (0.90, 1.16) 1.31 (0.55, 3.14) 0.78 (0.49, 1.26) 1.14 (0.98, 1.34) 

  Liver disease 
0.66 (0.60, 0.73) 0.74 (0.42, 1.29) 0.66 (0.54, 0.80) 0.62 (0.55, 0.70) 

  Metastatic cancer 0.66 (0.58, 0.76) 0.91 (0.23, 3.61) 1.02 (0.73, 1.42 ) 0.86 (0.72, 1.03) 

  Psychosis 0.80 (0.77, 0.83) 0.89 (0.73, 1.09) 0.83 (0.78, 0.89 ) 0.87 (0.83, 0.91) 

  Pulmonary disease, 
chronic 0.99 (0.95, 1.03) 0.79 (0.63, 1.00) 0.87 (0.79, 0.95) 0.93 (0.88, 0.98) 

  Pulmonary circulation 
disorder 1.08 (0.96, 1.22) 0.83 (0.39, 1.76) 1.02 (0.59, 1.76) 1.14 (0.99, 1.32) 

  Peripheral vascular 
disease 0.96 (0.91, 1.01) 0.87 (0.51, 1.48) 0.88 (0.73, 1.05) 0.86 (0.81, 0.92) 

  Renal failure 0.49 (0.47, 0.52) 0.66 (0.46, 0.96) 0.81 (0.70, 0.93) 0.46 (0.43, 0.49) 

  Tumor, any 0.71 (0.66, 0.75) 0.63 (0.39, 1.02) 0.74 (0.62, 0.88) 0.69 (0.63, 0.74) 

  Weight loss 0.95 (0.86, 1.04) 1.16 (0.61, 2.20) 0.70 (0.46, 1.08) 1.19 (1.06, 1.35) 

Additional comorbidities specific to test case 

  Myocardial infarction 0.81 (0.75, 0.87) 0.82 (0.46, 1.46) 0.82 (0.66, 1.03) 0.85 (0.78, 0.94) 

  Ischemic stroke 1.23 (1.15, 1.31) 1.32 (0.75, 2.31) 0.78 (0.58, 1.05) 0.94 (0.87, 1.01) 

  Intracranial 
hemorrhage 0.86 (0.75, 0.99) 2.51 (1.12, 5.64) 0.38 (0.18 , 0.82) 1.10 (0.91, 1.32) 

  Osteoarthritis 0.91 (0.88, 0.95) 0.85 (0.65, 1.12) 0.77 (0.69 , 0.85) 0.95 (0.90, 1.01) 

  Depression 0.90 (0.87, 0.93) 1.10 (0.93, 1.31) 0.94 (0.88, 1.00) 0.89 (0.85, 0.93) 
a CPT Code for glucose not included due to zero cell/collinearity; time to outcome was also included in these models (to align 
with variables in the imputation models) but was not included in the table due to limited interpretability and non-
significance 
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d. Baseline Confounder Test Case 1 analytic approaches to handle missing glucose result values: 
multiple imputation using regression, multiple Imputation using predictive mean matching, and 
meta-analysis 

We compared five different methods (Table 8) to assess the importance of the baseline glucose result 
value in estimating the relationship of SGA with diabetes risk. Three (naïve) methods were used to 
“avoid” imputation of missing data (Table 8, Models 1 – 3). The first approach used the entire cohort, 
but did not include glucose in the outcome model. In other words, this approach was to not use the 
laboratory result variable regardless of whether the value was present or missing. This approach would 
be valid if there was no residual confounding due to the baseline glucose results value (i.e., glucose 
could appear as a confounder in bivariate analysis, but not after controlling for demographics, 
utilization, diagnoses, and other information). The second and third approaches involved excluding all 
data from subjects who had missing glucose results values (i.e., complete case analyses). This approach 
is not recommended, but was used for comparison. In this complete case cohort, we fit one outcome 
model that controlled for all variables except glucose (Table 8, Model 2). In the other, we included all 
variables (Table 8, Model 3). 

After completing the above models, we applied two MI methods (Table 8, Models 4 and 5): a regression 
approach and predictive mean matching. In each case, we imputed ten data sets and combined the 
results using the methods of Rubin.70 Both the regression method and predictive mean matching were 
implemented using SAS® PROC MI (SAS Institute Inc., Cary, NC).71  

The regression approach to MI is the most common and easy to implement MI method.70 Because it 
relies on a normality assumption, we first assessed skewness and performed a log-transformation to 
improve symmetry, with log glucose serving as the outcome variable in the imputation. All of the 
variables listed in Table 6 were included in the model to predict log-glucose. A linear regression was 
fitted with log-glucose as the outcome and the other variables as predictors for subjects with observed 
glucose. Then, for each patient missing log-glucose, a draw from the predictive distribution was 
obtained. This created one imputed data set. The process was repeated nine more times. 

Predictive mean matching is similar, except the draw from the predictive distribution is not used as the 
imputed value.72 Instead, the predicted value is matched to a randomly selected observed value of log-
glucose similar to the predicted value. An advantage of predictive mean matching is that normality is not 
assumed. In addition, imputed values are guaranteed to not be more extreme than observed values. A 
drawback of the approach is the tradeoff between having matched values close to the predicted values, 
and having low between imputation correlations. If, for example, the number of ‘similar’ values were 
small, then the correlation between imputed data sets would be high. Alternatively, having a more 
liberal definition can lead to less correlation with the predicted value (i.e., more random noise). 
Although not implemented in this test case, one way to deal with this problem is to do weighted 
sampling which lowers the correlation by distributing the matching to more than one ‘best’ 
observation.73, 74  

The outcome model was a Cox proportional hazards model. The SGAs were the exposures of interest, 
and were entered into the model as separate indicator variables with aripiprazole as the reference. Log 
glucose was included in the models (except for the two models) as a potential confounder. All other 
variables in Table 6 were included in the model.  

We made one additional comparison. We compared results based on pooling the data from all three 
sites and treating it as one big data set (with site indicators in the model) versus imputing and fitting the 
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outcome model separately each site and then combining using meta-analysis methods. For the separate 
site analysis, we used the same imputation methods and outcome model. For the meta-analysis, we 
used a Bayesian random effects approach (implemented using PROC MCMC in SAS). 

e. Baseline Confounder Test Case 1 results and discussion 

The adjusted results from the Cox models are in Table 8, with hazard ratios (HR) and 95%CI reported for 
the SGA and for log-glucose. HRs for other variables are not reported (to focus attention on the main 
findings). 

Table 8. Assessment of whether Risk of Diabetes Varies by Specific Second Generation Antipsychotic 
Agent. Hazard Ratios from Statistical Models with and without Imputation of Baseline Glucose a,b 

Characteristic Statistical Model 
Hazard Ratios (95% CI) 

1 
Entire Cohort 
(with and without 
baseline glucose 
results); Glucose 
Results Not 
Included 
 

2 
Sub-Cohort 
(Complete Cases) 
with Baseline 
Glucose Results 
Available; 
Glucose Results 
Not Included 
 

3 
Sub-Cohort 
(Complete Cases) 
with Baseline 
Glucose Results 
Available; 
Glucose Results 
Included 
 

4 
Entire Cohort; 
Baseline Glucose 
Results Included 
and Missing 
Baseline Glucose 
Results Imputed 
using Predictive 
Mean Matching  

5 
Entire Cohort; 
Baseline Glucose 
Results Included 
and Missing 
Baseline Glucose 
Results Imputed 
using Regression 

Imputation across data partner sites 

N in model  83,491 33,714 33,714 83,491 83,491 

Olanzapine 1.04 (0.92, 1.18) 0.92 (0.74, 1.14) 0.91 (0.73, 1.12) 1.02 (0.90, 1.16) 1.02 (0.91, 1.16) 

Quetiapine 1.04 (0.9 , 1.15) 1.05 (0.90, 1.23) 1.04 (0.89, 1.21) 1.03 (0.93, 1.13) 1.02 (0.93, 1.12) 

Risperidone 1.11 (1.00, 1.23) 1.17 (0.99, 1.38) 1.17 (0.99, 1.38) 1.10 (0.99, 1.22) 1.10 (0.99, 1.22) 

Log GLU NA NA 12.8 (10.2, 16.2) 12.2 (10.1, 14.7) 16.5 (12.8, 21.2) 

Imputation within each data partner site; outcome model results combined with meta-analysis 

N in model 83,491 NA c NA c 83,491 83,491 

Olanzapine 0.99 (0.41, 1.75)   0.97 (0.39, 1.76) 0.96 (0.38, 1.76) 

Quetiapine 1.01 (0.57, 1.57)   1.00 (0.56, 1.56) 1.00 (0.55, 1.55) 

Risperidone 1.14 (0.70, 1.73)   1.11 (0.65, 1.74) 1.10 (0.64, 1.72) 

Imputation within each data partner site 

Site 1 

N in model 3851 2193 2193 3851 3851 

Olanzapine 0.62 (0.16, 2.39) 0.32 (0.04, 2.89) 0.27 (0.03, 2.46) 0.57 (0.15, 2.19) 0.53 (0.14, 2.04) 

Quetiapine 0.90 (0.42, 1.95) 1.15 (0.42, 3.17) 1.11 (0.40, 3.08) 0.86 (0.40, 1.87) 0.83 (0.38, 1.81) 

Risperidone 1.26 (0.59, 2.69) 1.40 (0.50, 3.90) 1.28 (0.45, 3.62) 1.19 (0.55, 2.56) 1.14 (0.53, 2.44) 

Log GLU   11.0 (3.54, 34.0) 9.73 (2.83, 33.5) 15.0 (5.16, 43.4) 

Site 2 

N in model 31,619 18,530 18,530 31,619 31,619 

Olanzapine 0.76 (0.56, 1.03) 0.81 (0.53, 1.23) 0.76 (0.50, 1.16) 0.74 (0.54, 1.02) 0.73 (0.54, 1.00) 

Quetiapine 0.85 (0.69, 1.06) 1.12 (0.82, 1.53) 1.07 (0.78, 1.46) 0.83 (0.67, 1.04) 0.82 (0.67, 1.02) 

Risperidone 1.01 (0.79, 1.29) 1.27 (0.89, 1.80) 1.10 (0.77, 1.56) 0.92 (0.71, 1.18) 0.90 (0.70, 1.15) 

Log GLU   44.7 (31.4, 63.7) 41.8 (28.9, 60.3) 62.8 (43.3, 90.9) 

Site 3 

N in model 48,021 12,991 12,991 48,021 48,021 

Olanzapine 1.13 (0.99, 1.29) 1.00 (0.78, 1.27) 0.99 (0.77, 1.27) 1.13 (0.98, 1.29) 1.12 (0.98, 1.28) 

Quetiapine 1.10 (0.99, 1.22) 1.02 (0.85, 1.23) 1.01 (0.84, 1.22) 1.09 (0.98, 1.21) 1.09 (0.98, 1.21) 

Risperidone 1.13 (1.01, 1.27) 1.11 (0.91, 1.35) 1.12 (0.92, 1.37) 1.15 (1.02, 1.29) 1.15 (1.02, 1.29) 

Log GLU   6.26 (4.59, 8.55) 5.55 (4.14, 7.44) 6.80 (4.84, 9.55) 
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Characteristic Statistical Model 
Hazard Ratios (95% CI) 

1 
Entire Cohort 
(with and without 
baseline glucose 
results); Glucose 
Results Not 
Included 
 

2 
Sub-Cohort 
(Complete Cases) 
with Baseline 
Glucose Results 
Available; 
Glucose Results 
Not Included 
 

3 
Sub-Cohort 
(Complete Cases) 
with Baseline 
Glucose Results 
Available; 
Glucose Results 
Included 
 

4 
Entire Cohort; 
Baseline Glucose 
Results Included 
and Missing 
Baseline Glucose 
Results Imputed 
using Predictive 
Mean Matching  

5 
Entire Cohort; 
Baseline Glucose 
Results Included 
and Missing 
Baseline Glucose 
Results Imputed 
using Regression 

a All variables shown in Table 6 were included in the models 
b Aripiprazole was reference SGA; site 1 was reference Data Partner  
c Meta-analyses combining the results were completed for the primary Models 1, 4, and 5 

We first focus on the pooled analysis where data from sites were combined and then analyzed. These 
are displayed in the first rows of Table 8. As expected, log-glucose was a strong predictor of incident 
diabetes, with estimated HRs ranging from about 12 to 16 (and highly significant). The two MI methods 
(Table 8, Models 4 and 5) led to very similar point estimates and 95%CI for the SGAs, with each point 
estimate and confidence limit not differing by more than 0.01. Including log-glucose in the model had a 
small impact on the point estimates and 95%CI (Table 8, compare Model 1 with 4 and 5), but the 
difference was not clinically meaningful. The two models using only subjects with observed glucose 
(Table 8, Models 2 and 3) resulted in somewhat different HR and much wider 95%CI. 

Next, we compare the pooled approach with the meta-analysis approach. We will focus on the MI 
approaches (Table 8 columns 4 and 5). First, notice the site-specific HR using predictive mean matching 
for imputation differ markedly across sites. For example, the estimated HR for olanzapine is 0.57 for site 
1 and 1.13 for site 3. The 95%CI are also wide. Comparing the meta-analysis results with the pooled 
results shows drastic differences, especially in the width of the 95%CI (with the meta-analysis intervals 
being much wider). This suggests that pooling data and only adjusting for site indicators did not 
sufficiently account for variations in the relationship between variables between sites. 

In summary, in this test case all three missing data methods led to similar point estimates and 95%CI. 
The most striking finding from this test case was how different the results were with a single pooled 
analysis rather than either site-specific or meta-analytic approach.  

2. Baseline Confounder Test Case 2: Baseline serum creatinine in patients with diabetes 
starting an angiotensin converting enzyme inhibitor (ACEi) and risk of hyperkalemia 

a. Baseline Confounder Test Case 2 cohort development 

ACEi are prescribed to selected persons with diabetes to lower blood pressure, slow renal disease 
progression, and decrease morbidity and mortality after myocardial infarction.75-79 A known risk with 
ACEi is the potential for hyperkalemia.80-83 Risk of this adverse effect is heightened for persons with poor 
kidney function or taking higher doses.83, 84 This test case examined models that included adjustment for 
serum creatinine result values in analyses comparing high versus low dose lisinopril and the outcome of 
diagnosed hyperkalemia. As with all test cases in this report, serum creatinine result values were not 
consistently available and the primary goal was to describe methods of dealing with the missing 
laboratory results data. Additional detail on the research questions and the cohort are provided below. 

 Research Questions: 
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 Does inclusion of a baseline serum creatinine laboratory test result value reduce the 
potential bias when modeling the associations between exposure to lisinopril and the risk of 
a hyperkalemia outcome in patients in the MSDD with diagnosed diabetes?  

 What is the contribution of a baseline serum creatinine laboratory result value when 
evaluating the association between high dose (> 20 mg) versus low dose (< 20 mg) lisinopril 
exposure and the risk of hyperkalemia outcome in patients in the MSDD with diagnosed 
diabetes? (serum creatinine result value is modeled as a continuous variable) 

 What is the performance of selected “Missing Data Methods” when modeling the association 
between high versus low dose lisinopril exposure and hyperkalemia outcome? 

Cohort members were adults >21 years of age with diagnosed diabetes who were members of one of 
the sites between 7/1/2008 and 10/31/2012. We identified new users of an ACEi by selecting the first 
dispensing and requiring a minimum of 6 months enrollment prior to the first dispensing. We excluded 
persons on dialysis or with end stage renal disease because they typically have rapidly changing clinical 
status and dialysis patients could have potassium values that rise and fall relative to dialysis timing. We 
retained patients with lesser degrees of chronic kidney disease. Serum creatinine results were identified 
and used only from outpatient care settings. 

Lisinopril was the predominant ACEi used at all three data partner sites. We focused on lisinopril, 
retaining 85% of the cohort of new ACEi users (Figure 2). 
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Figure 2. Test Case Cohort for Baseline Confounder Adjustment Test Case 2, Baseline Serum Creatinine 
in Patients with Diabetes Starting an Angiotensin Converting Enzyme Inhibitor (ACEi) a 
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b. Baseline Confounder Test Case 2 descriptive analysis of missing laboratory results 

A comprehensive description of the cohort is provided in Tables 9 and 10. At the time of lisinopril 
initiation, 69,760 (35.2%) were started on higher doses (> 20 mg). Approximately 2.5% had a 
hyperkalemia diagnosis within one year after lisinopril initiation; this proportion was similar for low and 
high doses (2.6% and 2.4%, respectively). Creatinine results were available for 55% of the cohort. A 
lower proportion of patients starting higher dosage lisinopril had a creatinine result available (49% vs 
58% on lower doses). This difference was partially related to differences in site prescribing patterns and 
creatinine result availability: site 3 had a higher proportion of high dose patients (76.9% vs 62.1% low 
dose patients) and was more likely to have missing creatinine results (44.5% with results versus >76% at 
the sites 1 and 2 [Table 10]). Although the availability of creatinine results differed by site, CPT codes 
indicating a test had been completed were comparable (79.7% site 1, 76.5% site 2, 80.6% site 3). 

Table 9. Characteristics of Individuals in the Baseline Confounder Test Case 2 Population, Lisinopril 
Dose and Hyperkalemia Diagnosis 

Characteristics Lisinopril Total 
N=198,265 Dose < 20 mg 

N=128,505 (64.8%) 
Dose > 20 mg 

N=69,760 (35.2%) 

Outcome: Hyperkalemia diagnosis within one 
yeara 3325 (2.6) 1681 (2.4) 5006 (2.5) 

Serum creatinine laboratory test outpatient 
results available  

74,566 (58.0) 34,487 (49.4) 109,053 (55.0) 

Serum creatinine (mg/dl), mean (SD) 0.97 (0.42) 1.03 (0.51) 0.99 (0.45) 

Age in years, mean (SD) 64.6 (13.6) 65.9 (11.9) 65.0 (13.1) 

Race    

  White 80,422 (62.6) 42,064 (60.3) 122,486 (61.8) 

  Black 13,698 (10.7) 11,794 (16.9) 25,492 (12.9) 

  Other 11,040 (8.6) 4064 (5.8) 15,104 (7.6) 

  Unknown 23,345 (18.2) 11,838 (17.0) 35,183 (17.7) 

Hispanic ethnicity (Y vs N or unknown) 13,089 (10.2) 4668 (6.7) 17,757 (9.0) 

Female gender  61332 (47.7) 33699 (48.3) 95031 (47.9) 

Year of cohort entry    

  2008 15,739 (12.2) 8675 (12.4) 24,414 (12.3) 

  2009 31,431 (24.5) 18,668 (26.8) 50,099 (25.3) 

  2010 28,369 (22.1) 16,885 (24.2) 45,254 (22.8) 

  2011 28,606 (22.3) 14,618 (21.0) 43,244 (21.8) 

  2012 (1/1 – 10/31) 24,360 (19.0) 10,914 (15.6) 35,274 (17.8) 

Site    

  1 6660 (5.2) 1837 (2.6) 8497 (4.3) 

  2 42,009 (32.7) 14,257 (20.4) 56,266 (28.4) 

  3 79,836 (62.1) 53,666 (76.9) 133,502 (67.3) 

Serum creatinine laboratory procedure code 
(CPT code) b, c 

103,154 (80.3) 54,289 (77.8) 157,443 (79.4) 

Number of unique medication classes 
dispensed, mean (SD)c 

6.2 (4.7) 6.1 (4.5) 6.2 (4.7) 

Number of ambulatory medical visits during 
baseline, mean (SD)c 

7.1 (7.7) 6.9 (7.3) 7.0 (7.6) 

Emergency department visit during baseline, N 
(%) yes c 

19.1 16.2 18.1 

Hospitalization during baseline, N (%) yes c 16.9 12.7 15.4 

Institutional stay during baseline, N (%) yes c 8.7 8.4 8.6 

Comorbidity score, mean (SD) c, d 1.1 (2.2) 0.81 (2.0) 1.0 (2.1) 
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Characteristics Lisinopril Total 
N=198,265 Dose < 20 mg 

N=128,505 (64.8%) 
Dose > 20 mg 

N=69,760 (35.2%) 

Individual comorbidities c, d    

  Alcohol abuse 1831 (1.4) 818 (1.2) 2649 (1.3) 

  Anemia, deficiency 14,695 (11.4) 7962 (11.4) 22,657 (11.4) 

  Arrhythmia 1,4692 (11.4) 6072 (8.7) 20,764 (10.5) 

  Coagulation disorder 2701 (2.1) 1073 2.1 3774 (1.9) 

  Congestive heart failure 5311 (4.1) 2643 (3.8) 7954 (4.0) 

  Diabetes, complicated 42 (<0.1) 16 (<0.1) 58 (<0.1) 

  Dementia 1524 (1.2) 626 (0.9) 2150 (1.1) 

  Fluid/Electrolyte disorders < 6 (0) < 6 (0) < 6 (0) 

  HIV/AIDS 190 (0.1) 78 (0.1) 268 (0.1) 

  Hypertension 79,187 (61.6) 54,303 (77.8) 133,490 (67.3) 

  Hemiplegia < 6 (0) < 6 (0) < 6 (0) 

  Liver disease 3716 (2.9) 1553 (2.2) 5269 (2.7) 

  Metastatic cancer < 6 (0) < 6(0) < 6 (0) 

  Psychosis 31 (<0.1) 14 (<0.1) 45 (<0.1) 

  Pulmonary disease, chronic 13,091 (10.2) 6188 (8.9) 19,279 (9.7) 

  Pulmonary circulation disorder 24 (<0.1) 11 (<0.1) 35 (<0.1) 

  Peripheral vascular disease 8858 (6.9) 4751 (6.8) 13,609 (6.9) 

  Renal failure 1505 (1.2) 927 (1.3) 2432 (1.2) 

  Tumor, any 3442 (2.7) 1893 (2.7) 5335 (2.7) 

  Weight loss 191 (0.1) 65 (0.1) 256 (0.1) 

Additional comorbidities (specific to test case)    

Prior history of Hyperkalemia dx 1500 (1.2) 759 (1.1) 2259 (1.1) 

  CKD I-IV 17,918 (13.9) 9751 (14.0) 27,669 (14.0) 

  MI / Stroke 16,722 (13.0) 7530 (10.8) 24,252 (12.2) 

Rx dispensing, increases K+ e 63,207 (49.2) 35,687 (51.2) 98,894 (49.9) 

Rx dispensing, decreases K+ e 7136 (5.6) 2867 (4.1) 1003 (5.0) 
a Within 365 days after the cohort entry date 
b CPT codes 80047, 80048, 80053, 80069, 82565 
c Determined over the 183 days prior to the cohort entry date 
d Gagne et al69 
e Dispensed in 100 days prior to the cohort entry date; medication list is in Appendix D 

Table 10. Characteristics of Individuals in the Baseline Confounder Test Case 2 Population, Lisinopril 
Dose and Hyperkalemia Diagnosis by Data Partner Site 

Characteristics Data Partner Site 

Site 1 
N=8497 (4.3%) 

Site 2 
N=56,266 (28.4%) 

Site 3 
N=133,502 (67.3%) 

Outcome: Hyperkalemia diagnosis within one 
year a 

168 (2.0) 1052 (1.9) 3786 (2.8) 

Serum creatinine laboratory outpatient results 
available  

6716 (79.0) 42,920 (76.3) 59,417 (44.5) 

Serum creatinine (mg/dl), mean (SD) 1.00 (0.39) 0.93 (0.47) 1.04 (0.44) 

Age in years, mean (SD) 59.7 (13.0) 58.7 (13.7) 68.1 (11.7) 

Race    

  White 4998 (58.8) 28,470 (50.6) 89,018 (66.7) 

  Black 549 (6.5) 6057 (10.8) 18,886 (14.1) 

  Other 391 (4.6) 11,349 (20.2) 3364 (2.5) 

  Unknown 2559 (30.1) 10,390 (18.5) 22,234 (16.7) 

Hispanic ethnicity (Y vs N or unknown) 1812 (21.3) 13,019 (23.1) 2926 (2.2) 

Female Gender 3875 (45.6) 24,891 (44.2) 66,265 (49.6) 
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Characteristics Data Partner Site 

Site 1 
N=8497 (4.3%) 

Site 2 
N=56,266 (28.4%) 

Site 3 
N=133,502 (67.3%) 

Year of Cohort Entry    

  2008 1058 (12.5) 8226 (14.6) 15,130 (11.3) 

  2009 2191 (25.8) 15,614 (27.8) 32,294 (24.2) 

  2010 1846 (21.7) 12,988 (23.1) 30,420 (22.8) 

  2011 1986 (23.4) 10,697 (19.0) 30,541 (22.9) 

  2012 (1/1 – 10/31) 1416 (16.7) 8741 (15.5) 25,117 (18.8) 

Serum creatinine laboratory Procedure Code 
(CPT code) b, c 

6775 (79.7) 43,059 (76.5) 107,609 (80.6) 

Number of unique medication classes 
dispensed, mean (SD)c 

4.7 (4.0) 4.8 (4.1) 6.9 (4.8) 

Number of ambulatory medical visits during 
baseline, mean (SD)c 

3.5 (4.2) 4.1 (5.3) 8.5 (8.1) 

Emergency department visit during baseline, N 
(%) yes c 

1097 (12.9) 11,959 (21.3) 22,759 (17.0) 

Hospitalization during baseline, N (%) yes c 717 (8.4) 6109 (10.9) 23,795 (17.8) 

Institutional stay during baseline, N (%) yes c 135 (1.6) 870 (1.5) 16,005 (12.0) 

Comorbidity Score, mean (SD) c, d 0.8 (1.8) 0.7 (1.8) 1.2 (2.3) 

Individual comorbidities c, d    

  Alcohol abuse 125 (1.5) 983 (1.7) 1541 (1.2) 

  Anemia, deficiency 380 (4.5) 3383 (6.0) 18,894 (14.2) 

  Arrhythmia 471 (5.5) 3031 (5.4) 17,262 (12.9) 

  Coagulation disorder 120 (1.4) 617 (1.1) 3037 (2.3) 

  Congestive heart failure 126 (1.5) 439 (0.8) 7389 (5.5) 

  Diabetes, complicated < 6(0) < 6 (0) 56 (<0.1) 

  Dementia 35 (0.4) 232 (0.4) 1883 (1.4) 

  Fluid/Electrolyte disorders < 6 (0) < 6 (0) < 6 (0) 

  HIV/AIDS < 6 (0) 94 (0.2) 171 (0.1) 

  Hypertension 3635 (42.8) 27,206 (48.4) 102,649 (76.9) 

  Hemiplegia < 6 (0) < 6 (0) < 6 (0) 

  Liver disease 308 (3.6) 1661 (3.0) 3300 (2.5) 

  Metastatic cancer < 6 (0) < 6 (0) < 6 (0) 

  Psychosis < 6 (0) < 6 (0) 44 (<0.1) 

  Pulmonary disease, chronic 383 (4.5) 1794 (3.2) 17,102 (12.8) 

  Pulmonary circulation disorder < 6 (0) < 6 (0) 35 (<0.1) 

  Peripheral vascular disease 187 (2.2) 1462 (2.6) 11,960 (9.0) 

  Renal failure 59 (0.7) 366 (0.7) 2007 (1.5) 

  Tumor, any 127 (1.5)  952 (1.7) 4256 (3.2) 

  Weight loss < 6 (0) 31 (0.1) 223 (0.2) 

Additional comorbidities (specific to test case)    

Prior history of hyperkalemia dx 63 (0.7) 366 (0.7) 1830 (1.4) 

  CKD I-IV 1223 (14.5) 6095 (10.8) 20,341 (15.2) 

  MI / Stroke 542 (6.4) 3943 (7.0) 19,767 (14.8) 

Rx dispensing, increases K+ e 3131 (36.8) 23,190 (41.2) 72,573 (54.4) 

Rx dispensing, decreases K+ e 334 (3.9) 1823 (3.2) 7846 (5.9) 
a Within 365 days after the cohort entry date 
b CPT codes 80047, 80048, 80053, 80069, 82565 
c Determined over the 183 days prior to the cohort entry date 
d Gagne et al69 
e Dispensed in 100 days prior to the cohort entry date; medication list is in Appendix D 
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c. Baseline Confounder Test Case 2 methods to investigate predictors of missing serum creatinine 
results value 

Tables 9 and 10 provide both a summary comorbidity score69 as well as indicators for the individual 
comorbidity items that are used in this score. It is often preferable to use the individual items when the 
goal is to maximize the amount of variability explained. MI modeling is one such arena; we chose to 
utilize the individual indicators rather than the summary score in the imputation models. However, a 
few individual indicators were very rare (<0.1% overall) and were not used as individual items in any 
analytic models (complicated diabetes, fluid/electrolyte disorders, hemiplegia, metastatic cancer, 
psychosis, pulmonary circulation disorder). Some additional comorbidity items, not part of the 
comorbidity score, were also captured and for this test case: prior history of hyperkalemia, CKD, history 
of MI or stroke and indicators for use of other drugs that might impact serum potassium levels (list of 
these other drugs is in Appendix D). 

We examined variable associations with missing creatinine results for the cohort overall (Table 11) and 
by site (Table 12). In these logistic regression models, missing creatinine result (indicator=1) versus non-
missing creatinine result (indicator=0) was the outcome. In combined models that adjusted for site and 
other covariates (Table 11), persons on higher doses of lisinopril remained significantly more likely to 
have missing serum creatinine results but the magnitude of the ORs were decreased (OR 1.09 versus 
1.41 unadjusted). The odds of creatinine being missing decreased each year after 2008; females were 
slightly less likely to have missing creatinine as were non-white race groups. A higher comorbidity score 
was associated with less missing creatinine results but histories of ED visits and hospitalizations both 
resulted in increased risk of missing creatinine results. A history of CKD was associated with decreased 
risk of missing creatinine results in both the unadjusted and adjusted models. Univariate and adjusted 
associations for additional covariates are in Table 11. 

Site specific models in Table 12 highlight variability by site. For example, the pattern of less missing data 
for non-white race groups seen in the combined models is only at site 3. Similarly, although a CKD 
diagnosis is strongly associated with a decreased likelihood of missing creatinine results at all sites, the 
magnitude of the associations differs by site. Even variables with associations that appear similar may 
still have significant variability by site. For example, increased age is associated with decreased missing 
creatinine results and the associations are relatively consistent by site in unadjusted models (OR 0.88 to 
0.94). Nevertheless, a site by age interaction term is significant (p<0.001). These general patterns 
support utilizing missing data methods that impute or account for missing data within site or use 
methods that allow for differing variable associations by site (e.g. site by variable interactions).  
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Table 11. Characteristics Potentially Associated with Missing Baseline Serum Creatinine Laboratory 
Results for the Population Included in Baseline Confounder Test Case 2, Hyperkalemia Diagnosis after 
Lisinopril Initiation: Unadjusted and Adjusted Odds Ratios 

Characteristic b Odds Ratio (95% Confidence Interval) a 

Unadjusted Adjusted c 

Lisinopril dose (> 20 mg vs < 20 mg)  1.41 (1.39, 1.44) 1.09 (1.06, 1.12) 

Sex, female vs male 0.98 (0.96, 1.00) 0.93 (0.90, 0.95) 

Age (per 10 years) 1.09 (1.08, 1.10) 0.96 (0.95, 0.97) 

Race, White reference   

  Black 0.88 (0.86, 0.91) 0.75 (0.72, 0.77) 

  Other 0.45 (0.43, 0.46) 0.72 (0.67, 0.76) 

  Unknown 0.84 (0.82, 0.86) 0.66 (0.63, 0.69) 

Hispanic ethnicity (Y vs N or unknown) 0.39 (0.38, 0.41) 0.77 (0.72, 0.83) 

Year of Cohort Entry, 2008 reference   

  2009 0.99 (0.96, 1.03) 1.01 (0.96, 1.05) 

  2010 0.84 (0.81, 0.86) 0.79 (0.75, 0.82) 

  2011 0.81 (0.78, 0.83) 0.71 (0.68, 0.74) 

  2012 (1/1 – 10/31) 0.75 (0.72, 0.77) 0.61 (0.59, 0.64) 

Site, 3 reference   

  1 0.21 (0.20, 0.22) 0.04 (0.04, 0.04) 

  2 0.25 (0.24, 0.26) 0.04 (0.03, 0.04) 

Serum Creatinine-related procedure code (CPT code) 0.02 (0.02, 0.02) 0.00 (0.00, 0.00) 

Number of unique medication classes dispensed 0.99 (0.99, 1.00) 0.99 (0.99, 1.00) 

Number of ambulatory visits 1.01 (1.01, 1.01) 1.01 (1.01, 1.01) 

Emergency department visits (Y vs N) 1.09 (1.08, 1.11) 1.14 (1.12, 1.16) 

Hospitalization (Y vs N) 1.28 (1.26, 1.30) 1.16 (1.13, 1.19) 

Institutional stay (Y vs N) 1.33 (1.31, 1.35) 1.19 (1.17, 1.21) 

Comorbidity scored 0.93 (0.92, 0.93) 0.91 (0.90, 0.92) 

Prior hyperkalemia diagnosis (Y vs N) 0.89 (0.82, 0.96) 1.25 (1.13, 1.38) 

CKD I-IV (Y vs N) 0.39 (0.38, 0.41) 0.47 (0.45, 0.49) 

MI / Stroke (Y vs N) 1.20 (1.17, 1.23) 0.91 (0.88, 0.95) 

Any Rx dispensing, increases K+ e (Y vs N) 1.09 (1.08, 1.11) 1.07 (1.04, 1.10) 

Any Rx dispensing, decreases K+ e (Y vs N) 1.06 (1.02, 1.11) 1.03 (0.98, 1.09) 
a Missing baseline glucose laboratory test results is the dependent variable 
b Determined over the 183 days prior to the cohort entry date 
c Adjusted for all variables shown in table 
dGagne et al69 
e Dispensed in 100 days prior to the cohort entry date; medication list is in Appendix D 
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Table 12. Characteristics Potentially Associated with Missing Baseline Serum Creatinine Laboratory 
Results for the Population Included in Baseline Confounder Test Case 2, Hyperkalemia Diagnosis after 
Lisinopril Initiation: Unadjusted and Adjusted Odds Ratios by Data Partner Site 

Characteristic a Site 1 
N=8,497 

Site 2 
N=56,266 

Site 3 
N=133,502 

Odds Ratio (95% Confidence 
Interval) b 

Odds Ratio (95% Confidence 
Interval) b 

Odds Ratio (95% Confidence 
Interval) b 

Unadjusted Adjusted c Unadjusted Adjusted c Unadjusted Adjusted c 

Lisinopril Dose (> 20 mg vs 
< 20 mg) 

1.27 
(1.12, 1.43) 

1.40 
(0.94, 2.11) 

1.26 
(1.21, 1.32) 

1.16 
(0.97, 1.38) 

1.17 
(1.14, 1.19) 

1.08 
(1.05, 1.10) 

Sex, Female vs Male 0.93 
(0.83, 1.03) 

1.20 
(0.84, 1.73) 

0.92 
(0.89, 0.96) 

1.05 
(0.90, 1.24) 

0.91 
(0.89, 0.93) 

0.92 
(0.90, 0.94) 

Age (per 10 years) 0.92 
(0.89, 0.96) 

1.12 
(0.96, 1.30) 

0.95 
(0.94, 0.97) 

1.00 
(0.94, 1.06) 

0.90 
(0.89, 0.91) 

0.95 
(0.94, 0.96) 

Race, White reference 

  Black 1.03 
(0.83, 1.29) 

1.52 
(0.73, 3.18) 

1.17 
(1.10, 1.25) 

1.09 
(0.84, 1.41) 

0.79 
(0.76, 0.81) 

0.75 
(0.72, 0.77) 

  Other 0.87 
(0.66, 1.14) 

1.34 
(0.51, 3.48) 

1.01 
(0.96, 1.06) 

0.68 
(0.55, 0.85) 

0.73 
(0.68, 0.78) 

0.70 
(0.64, 0.75) 

  Unknown 1.42 
(1.27, 1.59) 

3.86 
(2.46, 6.06) 

1.09 
(1.03, 1.15) 

0.66 
(0.51, 0.86) 

0.89 
(0.87, 0.92) 

0.65 
(0.62, 0.67) 

Hispanic ethnicity, (Y vs N 
or unknown) 

1.18 
(1.04, 1.33) 

0.27 
(0.16, 0.47) 

1.03 
(0.98, 1.07) 

1.09 
(0.87, 1.38) 

0.43 
(0.39, 0.46) 

0.59 
(0.54, 0.66) 

Year of Cohort Entry, 2008 reference 

  2009 0.86 
(0.72, 1.02) 

0.77 
(0.40, 1.51) 

1.00 
(0.94, 1.06) 

1.70 
(1.32, 2.19) 

0.94 
(0.91, 0.98) 

0.98 
(0.94, 1.03) 

  2010 0.85 
(0.70, 1.02) 

0.74 
(0.37, 1.48) 

0.86 
(0.81, 0.92) 

2.17 
(1.67, 2.82) 

0.72 
(0.69, 0.74) 

0.75 
(0.72, 0.79) 

  2011 1.04 
(0.87, 1.24) 

1.76 
(0.92, 3.35) 

0.83 
(0.77, 0.89) 

2.10 
(1.60, 2.77) 

0.64 
(0.62, 0.67) 

0.67 
(0.64, 0.70) 

  2012 (1/1 – 10/31) 0.96 
(0.79, 1.16) 

1.72 
(0.87, 3.40) 

0.76 
(0.71, 0.82) 

2.27 
(1.70, 3.04) 

0.59 
(0.56, 0.61) 

0.58 
(0.55, 0.61) 

Serum creatinine-related 
procedure Code (CPT 
code)(Y vs N) 

<0.001 
(0.00, 0.00) 

<0.001 
(0.00, 0.00) 

<0.001 
(0.00, 0.00) 

<0.001 
(0.00, 0.00) 

0.04 
(0.03, 0.04) 

0.04 
(0.03, 0.04) 

Number of unique 
medication classes 
dispensed 

0.94 
(0.93, 0.95) 

0.77 
(0.73, 0.82) 

0.92 
(0.91, 0.92) 

0.90 
(0.88, 0.92) 

0.97 
(0.97, 0.98) 

0.99 
(0.99, 1.00) 

Number of ambulatory 
visits 

0.96 
(0.95, 0.98) 

1.13 
(1.09, 1.17) 

0.93 
(0.92, 0.94) 

0.98 
(0.96, 0.99) 

0.99 
(0.99, 0.99) 

1.01 
(1.01, 1.01) 

Emergency department 
visit (Y vs N) 

1.02 
(0.93, 1.12) 

1.34 
(1.06, 1.68) 

1.12 
(1.09, 1.14) 

1.31 
(1.22, 1.40) 

1.15 
(1.13, 1.17) 

1.12 
(1.10, 1.14) 

Hospitalization (Y vs N) 1.14 
(1.00, 1.30) 

1.19 
(0.74, 1.90) 

1.31 
(1.26, 1.35) 

1.31 
(1.14, 1.51) 

1.16 
(1.14, 1.19) 

1.16 
(1.13, 1.19) 

Institutional stay (Y vs N) 0.30 
(0.16, 0.56) 

0.49 
(0.19, 1.28) 

1.15 
(1.04, 1.28) 

0.88 
(0.65, 1.18) 

1.15 
(1.13, 1.17) 

1.19 
(1.17, 1.22) 

Comorbidity Scored 0.91 
(0.88, 0.94) 

0.98 
(0.84, 1.13) 

0.94 
(0.93, 0.96) 

1.07 
(1.01, 1.13) 

0.88 
(0.88, 0.89) 

0.91 
(0.90, 0.91) 

Prior hyperkalemia dx (Y vs 
N) 

0.19 
(0.06, 0.60) 

0.05 
(0.01, 0.40) 

0.73 
(0.56, 0.95 

1.80 
(0.90, 3.57) 

0.74 
(0.67, 0.81) 

1.24 
(1.12, 1.37) 

CKD I-IV (Y vs N) 0.60 
(0.51, 0.71) 

0.85 
(0.43, 1.68) 

0.49 
(0.45, 0.53) 

0.64 
(0.47, 0.88) 

0.30 
(0.30, 0.31) 

0.46 
(0.44, 0.48) 

MI / Stroke (Y vs N) 1.05 
(0.85, 1.30) 

1.92 
(1.01, 3.64) 

1.41 
(1.31, 1.51) 

3.57 
(2.72, 4.68) 

0.91 
(0.89, 0.94) 

0.89 
(0.86, 0.92) 
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Characteristic a Site 1 
N=8,497 

Site 2 
N=56,266 

Site 3 
N=133,502 

Odds Ratio (95% Confidence 
Interval) b 

Odds Ratio (95% Confidence 
Interval) b 

Odds Ratio (95% Confidence 
Interval) b 

Unadjusted Adjusted c Unadjusted Adjusted c Unadjusted Adjusted c 

Any Rx dispensing, 
increases K+ e (Y vs N) 

0.89 
(0.79, 0.99) 

1.95 
(1.31, 2.92) 

0.89 
(0.86, 0.93) 

1.31 
(1.10, 1.56) 

0.94 
(0.92, 0.96) 

1.07 
(1.04, 1.09) 

Any Rx dispensing, 
decreases K+ e (Y vs N) 

0.79 
(0.59, 1.05) 

1.66 
(0.67, 4.13) 

0.85 
(0.76, 0.95) 

0.96 
(0.62, 1.47) 

0.92 
(0.88, 0.97) 

1.04 
(0.98, 1.09) 

a Determined over the 183 days prior to the cohort entry date 
b Missing baseline glucose laboratory test results is the dependent variable 
c Adjusted for all variables shown in table 
d Gagne et al69 
e Dispensed in 100 days prior to the cohort entry date; medication list is in Appendix D 

d. Baseline Confounder Test Case 2 analytic Approaches to handle missing serum creatinine result 
values using inverse probability of treatment weighting analyses: propensity scores with multiple 
imputation (regression method) or indicator of missing methods 

We chose to initially test methods similar to those used in the baseline confounder glucose results test 
case as well as to add another method (inverse probability treatment weighting using PS) with analyses 
unique to this test case. PS models are commonly used for confounder adjustment. We explored both 
MI and an indicator of missing data to account for missing data in the analyses (additional details 
below). For all comparisons, we modeled the outcome of time to hyperkalemia diagnosis within one 
year in Cox Proportional Hazards models.  

Missing data methods similar to the baseline confounder glucose results test case: We started with 
naïve models that explored model results either ignoring creatinine or using only the subset of persons 
with creatinine results available (i.e. complete case analyses). Complete case analyses are typically not a 
recommended method for dealing with missing data, but can be an important step in understanding the 
data and results. As noted by Sterne et al, when complete case and MI analyses give different results, 
one should attempt to understand why.85 This includes thoughtful consideration of the plausibility of the 
MAR assumption given available variables and whether MNAR is an issue. 

As in the glucose results test case, we imputed missing creatinine values using two methods in SAS® 
Proc MI (regression and predictive mean matching); see Section VIII.D.1.d. above for a more detailed 
description of these methods. The distribution of creatinine was highly skewed and a log-transformation 
improved the symmetry and normal approximation that is assumed in the regression imputation 
method. For each method, we created ten datasets with distinct imputed creatinine results. For this test 
case, MI were all completed within site and then combined for the outcome models. Site was included 
as a fixed effect in the outcome models. Cox proportional hazards models were run on each of the ten 
datasets and the results combined using methods of Rubin in Proc MIAnalyze.70 The models described 
above comprise Models 1 through 5 in Table 13 and are summarized as: 

 Model 1: Cox regression model with covariate adjustment except serum creatinine not included, 
full cohort (i.e. regardless of serum creatinine availability) 

 Model 2: Cox regression model with covariate adjustment, serum creatinine not included but 
only persons with laboratory values retained (same cohort members as Model 3) 

 Model 3: Cox regression model with covariate adjustment including serum creatinine (i.e. 
complete case analyses) 
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 Model 4: Cox regression model with MI regression method for missing serum creatinine values 
(MI completed within site; outcome model runs combined sites), Full cohort 

 Model 5: Cox regression model with MI using predictive mean matching method for missing 
serum creatinine values (MI completed within site; outcome model runs combined sites), Full 
cohort 

Additional missing data methods examined in this test case of baseline missing creatinine results 
included two methods of accounting for missing creatinine within PS models: 1) using a missing-
indicator variable and 2) using multiply imputed creatinine. The outcome for the PS model was high 
dose lisinopril vs low dose lisinopril. 

The first method using a missing-indicator variable is intuitively appealing and easy to implement. In a PS 
setting, the probability of treatment is modeled, and that probability might depend both on the decision 
to order a laboratory test, and on the test result value itself.86 For this method, we created a dummy 
variable equal to 1 if creatinine was missing and equal to zero otherwise. We created a new creatinine 
that had the original value if it was non-missing and was set to a constant otherwise.  

In addition to the missing indicator and creatinine variable described above, the PS model used the 
covariates in Table 11; individual comorbidities with very low frequencies (< 0.01%) were not included in 
the model. The outcome for the PS model was high dose lisinopril versus low dose lisinopril. The 
predicted probabilities of treatment were output and used to create stabilized inverse probability 
treatment weights that were included in the Cox Proportional Hazards model examining time to 
hyperkalemia diagnosis.87  

For the second method, we used the creatinine values imputed by the regression method (as in Model 
4) and included these in the PS model with an outcome of high dose versus low dose lisinopril. A PS was 
created for each of the ten imputation datasets. As above, the predicted probabilities were saved and 
used to create stabilized inverse probability treatment weights for the hyperkalemia outcome model. 
The outcome model was run for each of the ten datasets and the survival model results combined with 
Proc MIAnalyze in SAS®.  

The PS modeling was completed first using main effect variables only. Because the data from all sites 
were combined, these initial models assume comparable associations for variables with high versus low 
dose lisinopril at all sites. A second set of models were run that included all site by variable interactions 
to create PS that were ‘site-specific’. In addition, we executed models without creatinine to compare to 
results from the models that included creatinine using the missing data methods noted above.  

These steps resulted in five models (Table 13). All five used stabilized inverse probability treatment 
weights but with different inputs into the PS models. These models were: 

 Model 6: PS based on combined data from 3 sites; creatinine not included 

 Model 7: Site specific PS; creatinine not included 

 Model 8: PS based on combined data from 3 sites; creatinine included with indicator variable 
method for missing data 

 Model 9: Site specific PS; creatinine included with indicator variable method for missing data 

 Model 10: Site specific PS; MI using regression method for missing creatinine  
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e. Baseline Confounder Test Case 2 results and discussion 

The results from the Cox Proportional Hazards regression models are shown in Models 1 through 5 in 
Table 13. These models adjusted for potential confounders. In all five models, persons initiated on 
higher dose lisinopril were less likely to have a hyperkalemia diagnosis within the following year. The HR 
was closest to 1 but still significant in Model 1 (0.93 95% CI 0.88-0.99) which examined the full cohort 
without accounting for creatinine result value. HR and 95%CI were identical for the two MI methods; 
adjusting for creatinine in these models moved the HR slightly further from 1 (HR 0.88 [95% CI 0.83, 
0.94] models 4 and 5). The subset with creatinine results available had HR that were further from 1 prior 
to including creatinine (HR 0.89, model 2); including creatinine moved estimates even further from 1 (HR 
0.84 model 3).  

Table 13. Baseline Confounder Test Case 2, Hyperkalemia Diagnosis after Lisinopril Initiation: Cox 
Proportional Hazards Models examining the Association of High versus Low Dose Lisinopril with 
Hyperkalemia Diagnosis within One Year 

 Models with Regression Covariate Adjustments Models with Inverse Probability Treatment Weight 
Covariate Adjustments 

Model 
1 

Model 2 Model 3 Model 4 Model 5 Model 
6 

Model 
7 

Model 8 Model 9 Model 10 

Baseline 
serum 
creatinine 
in model?  

No No Yes Yes Yes No No Yes Yes Yes 

Missing 
data 
method 

None None  
 

None  
(complete 

case) 

MI, 
regression 

method 

MI, 
predictive 

mean 
matching 

None None Indicator 
variable 
method 

in PS 
model 

Indicator 
variable 
method 

in PS 
model 

MI, 
regression 
method, 
results in 
PS model  

Site 
specific 
models 
(for 
imputation 
or PS) 

NA NA NA Yes Yes No Yes a No  Yes a Yes 

Number in 
Model  

198,265 109,053b 109,053 198,265 198,265 198,265 198,265 198,265 198,265 198,265 

HR (95% 
CI) 
lisinopril 
20+mg vs < 
20mg  

0.93 
(0.88, 
0.99) 

0.89  
(0.82, 
0.97) 

0.84 
(0.77, 
0.92) 

0.88 
 (0.83, 
0.94) 

0.88 
 (0.83, 
0.94) 

0.97  
(0.92, 
1.03) 

0.98  
(0.93, 
1.04) 

0.94 
 (0.89, 
0.99) 

0.95 
 (0.89, 
1.00) 

0.96 
(0.91, 
1.02) 

HR (95% 
CI) Log 
Serum 
creatinine 

  4.14d 
(3.72, 
4.59) 

4.88 
(4.47, 
5.32) 

4.17  
(3.74, 
4.64) 

     

Trimmed 
PSb :N in 
model  

     194,013 194,331 194,376 193,908 194,499 
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 Models with Regression Covariate Adjustments Models with Inverse Probability Treatment Weight 
Covariate Adjustments 

Model 
1 

Model 2 Model 3 Model 4 Model 5 Model 
6 

Model 
7 

Model 8 Model 9 Model 10 

Trimmed 
PS b 
HR (95% 
CI) 
lisinopril 
20+mg vs < 
20mg  

     0.96 
(0.91, 
1.02) 

0.95 
(0.90, 
1.01) 

0.93 
 (0.88, 
0.99) 

0.91 
 (0.86, 
0.97) 

0.94 
(0.88, 
0.99) 

a Models included all variable by site interactions (regardless of significance) to create propensity scores (PS) that accounted for site 
specific associations 
b Selected for sample with serum creatinine results available but serum creatinine not in model  
c PS trimmed to remove persons in lowest and highest ~1% where there was less overlap of distributions 
d Hazard ratios appear high because Log serum creatinine has standard deviation=0.31 (i.e. <1); HR for a delta of 0.31 = 1.55 (95%CI 
1.50, 1.60)  

For each of these five models, we examined overlap of the PS. Overlap was generally reasonable except 
for some values at the tails. Trimming only a small percentage (i.e. ~< 1% and ~> 99%) removed the 
questionable areas. Results for both full models and trimmed models are in Table 13.  

As shown in Models 6 – 10 in Table 13, we saw little difference in the PS that combined sites versus PS 
that were site specific (e.g. comparing Model 6 and 7 or Model 8 and 9). Despite this empiric result, 
allowing associations to vary by site would likely have advantages when employing PS with few 
downsides in settings where sample sizes are large.  

All three models that included creatinine (Models 8-10) resulted in the HR moving slightly away from 1 
(from 0.97-0.98 to 0.94-0.96). Similarly, all trimmed models consistently moved the HR slightly further 
from 1 (e.g. 0.96 to 0.94 for Model 10). The varying samples in the trimmed models make comparisons 
between models questionable but in general results appear similar. For example, results for trimmed 
Model 8 and trimmed Model 10 are nearly identical. As expected, complete case analysis (Model 3), 
produced an estimate quite different from other models. 

In summary, we saw few differences related to the missing data methods used in this test case. Based 
on prior research recommendations, we consider MI models as appropriate when the MAR assumption 
is reasonable. We saw larger differences in results related to different analytic methods. 

3. Baseline Confounder Test Case: Baseline INR in current warfarin users starting a 
potentially interacting antimicrobial medication and risk of bleeding 

a. Baseline Confounder Test Case 3 cohort development 

Warfarin is an anticoagulant prescribed for prophylaxis and treatment of thromboembolic conditions. 
An INR is the laboratory test used to monitor the adequacy of the anticoagulant effect of warfarin. For 
most patients, INR monitoring is recommended to be conducted every four weeks or monthly.  

This test case examined approaches that included the INR result value in patients taking warfarin who 
were newly-dispensed either an antibiotic that has the potential to interact with warfarin to increase 
the INR result value or an antibiotic that is not considered to interact with warfarin. That is, the medical 
product exposure of interest was initiation of selected antimicrobials in patients undergoing chronic 
warfarin therapy. Antimicrobials were categorized into two groups: those that interact with warfarin 



 
  
 

 
 

Statistical Methods - 44 -  Analytic Methods for Using Laboratory Test Results 

(potentially interacting) and those that do not (non-interacting). Antimicrobials considered as interacting 
with the potential to increase bleeding risk included: fluconazole, itraconazole, ketoconazole, 
miconazole, ciprofloxacin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin, azithromycin, erythromycin, 
sulfamethoxazole, sulfisoxazole, tetracycline, doxycycline, demeclocycline, chloramphenicol, isoniazid, 
metronidazole, and neomycin. The non-interacting comparator antimicrobials included: cephalexin, 
clindamycin, trimethoprim (only products not in combination with sulfamethoxazole).  

Baseline INR monitoring was defined as any INR result value up to 30 days before and including the 
cohort entry date. If more than one INR monitoring within days – 30 and the cohort entry date, we 
retained the relative date closest to the cohort entry date that INR monitoring occurred. INR results 
were identified and used from outpatient, emergency department, and inpatient settings. As with all 
test cases in this report, INR were not consistently available; the primary goal was to describe varied 
methods of dealing with the missing laboratory results data.  

 Research Questions: In a cohort of patients taking chronic warfarin therapy, 

 Does inclusion of a baseline INR laboratory test result as a confounder in the PS model affect 
estimates or CI of the risk of bleeding among patients who are newly-started on an 
interacting or a non-interacting antimicrobial? 

 Does the choice of missing data method affect the point estimate or CI for the outcome 
analysis? 

 Do the results differ if the analysis is done using a pooled approach compared to stratifying 
by site?  

Cohort members were adults >21 years of age taking chronic warfarin therapy who were members of 
one of the participating data partner sites between 1/1/2008 and 11/30/2013. Chronic warfarin therapy 
was defined as requiring at least two dispensings of warfarin prior to the dispensing date of the 
antimicrobial of interest (i.e., warfarin therapy started prior to the antimicrobial). The cohort entry date 
was the dispensing date of the antimicrobial. The days’ supply dispensed of the last dispensing of 
warfarin prior to the cohort entry date must have spanned the cohort entry date. All cohort members 
were required to have medical and drug benefit coverage for at least 183 days prior to the antimicrobial 
dispensing. Figure 3 provides a diagram showing selection steps that resulted in the final cohort N = 
68,066. 

The outcome of interest was a coded bleeding/hemorrhage diagnosis from the inpatient setting within 
the first 30 days after the antimicrobial dispensing. A broad list of included bleeding diagnosis codes was 
developed from published literature (Appendix D).88, 89 Bleeding diagnoses associated with traumatic 
injury were excluded. 
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Figure 3. Test Case Cohort for Baseline Confounder Adjustment Test Case 3, Baseline INR in Current 
Warfarin Users Starting an Antimicrobial Medication a 
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b. Baseline Confounder Test Case 3 descriptive analysis of missing laboratory results 

Table 14 and Table 15 show summary statistics for key variables, stratified by treatment group (Table 
14) and by site (Table 15). We first describe key observations from Table 14. There were 68,066 subjects 
overall, with over twice as many in the interacting antimicrobial group compared with the non-
interacting antimicrobial group. The outcome, any inpatient bleed within 30 days, occurs in ~ 6% of the 
non-interacting antimicrobial group and in ~ 7% of the interacting antimicrobial group. INR was missing 
at a greater rate in the interacting antimicrobial group (60% versus 47% in the non-interacting 
antimicrobial group). The distribution of most variables was similar between groups. There was a large 
difference in antimicrobial type of treatment by site – with site 3 prescribing interacting antimicrobials 
at a higher rate than sites 1 or 2. 

Table 14. Characteristics of Individuals in the Test Case 3 Population, Warfarin Users Starting an 
Antimicrobial Agent 

Variable Non-Interacting  
N=20,596 (30.3%) 

Interacting  
N=47,470 (69.7%) 

Overall 
N=68,066 

Bleeding diagnosis, inpatient setting within 30 days 1251 (6.1) 3309 (7.0) 4560 (6.7) 

INR laboratory test result available 10,929 (53.1) 19,011 (40.0) 29,940 (44.0) 

INR result, mean (SD) 2.4 (0.9) 2.4 (1.0) 2.4 (0.9) 

Prior history of any bleed 4717 (22.9) 11774 (24.8) 16491 (24.2) 

Prior history of inpatient bleed 2638 (12.8) 7373 (15.5) 10011 (14.7) 

Female sex 9145 (44.4) 22,279 (46.9) 31,424 (46.2) 

Age in years, mean (SD) 72.9 (11.6) 73.3 (10.9) 73.1 (11.2) 

Race 

  White 17,604 (85.5) 39,656 (83.5) 57,260 (84.1) 

  Black 1112 (5.4) 3452 (7.3) 4564 (6.7) 

  Other 708 (3.4) 1469 (3.1) 2177 (3.2) 

  Unknown 1172 (5.7) 2893 (6.1) 4065 (6.0) 

Hispanic ethnicity (Y vs N or unknown) 838 (4.1) 1573 (3.3) 2411 (3.5) 

Year of cohort entry 

  2008 1135 (5.5) 2915 (6.1) 4050 (6.0) 

  2009 3474 (16.9) 8561 (18.0) 12,035 (17.7) 

  2010 3921 (19.0) 9181 (19.3) 13,102 (19.2) 

  2011 3957 (19.2) 9403 (19.8) 13,360 (19.6) 

  2012 4399 (21.4) 9590 (20.2) 13,989 (20.6) 

  2013 3710 (18.0) 7820 (16.5) 11,530 (16.9) 

Site 

  1 1448 (7.0) 2508 (5.3) 3956 (5.8) 

  2 7845 (38.1) 10,845 (22.8) 18,690 (27.5) 

  3 11,303 (54.9) 34,117 (71.9) 45,420 (66.7) 

INR laboratory procedure code (CPT) 19,176 (93.1) 42,913 (90.4) 62,089 (91.2) 

Additional antimicrobial dispensing within 30 days 43 (0.2) 1437 (3.0) 1480 (2.2) 

Total number of unique medication classes dispensed, 
mean (SD)c 7.7 (4.0) 8.1 (4.0) 7.9 (4.0) 

Dispensing of non-antimicrobial drug that can increase 
anticoagulant effect/bleeding risk of warfarin 7965 (38.7) 19,341 (40.7) 27,306 (40.1) 

Dispensing of non-antimicrobial drug that can decrease 
anticoagulant effect/bleeding risk of warfarin 278 (1.3) 714 (1.5) 992 (1.5) 

Number of ambulatory medical visits during baseline, 
mean (SD)c 9.0 (7.5) 10.0 (7.9) 9.7 (7.8) 

Emergency department visit during baseline, N (%) yes c 19.5 18.0 18.4 

Hospitalization during baseline, N (%) yes c 23.6 22.5 22.9 
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Variable Non-Interacting  
N=20,596 (30.3%) 

Interacting  
N=47,470 (69.7%) 

Overall 
N=68,066 

Institutional stay during baseline, N (%) yes c 11.0 13.4 12.7 

Comorbidity score, mean (SD) 1.8 (2.2) 1.9 (2.2) 1.9 (2.2) 

Individual comorbidities c, d    

  Alcohol abuse 267 (1.3) 553 (1.2) 820 (1.2) 

  Anemia 630 (3.1) 1705 (3.6) 2335 (3.4) 

  Arrhythmia 11,798 (57.3) 29,229 (61.6) 41,027 (60.3) 

  Coagulation disorder 431 (2.1) 960 (2.0) 1391 (2.0) 

  Congestive heart failure 1302 (6.3) 3561 (7.5) 4863 (7.1) 

  Diabetes, complicated < 6 (0) 6 (0) 7 (0.0) 

  Dementia 226 (1.1) 648 (1.4) 874 (1.3) 

  HIV/AIDS 14 (0.1) 50 (0.1) 64 (0.1) 

  Hypertension 13,567 (65.9) 32,372 (68.2) 45,939 (67.5) 

  Hemiplegia < 6 (0) < 6 (0) < 6 (0) 

  Liver disease 308 (1.5) 701 (1.5) 1009 (1.5) 

  Metastatic cancer < 6 (0) < 6 (0) < 6 (0) 

  Psychosis < 6 (0) 12 (0) 13 (0) 

  Pulmonary disease, chronic 2203 (10.7) 7474 (15.7) 9677 (14.2) 

  Pulmonary circulation disorder < 6 (0) 15 (0) 20 (0) 

  Peripheral vascular disease 2008 (9.7) 5077 (10.7) 7085 (10.4) 

  Renal failure 338 (1.6) 904 (1.9) 1242 (1.8) 

  Tumor, any 845 (4.1) 1851 (3.9) 2696 (4.0) 

  Weight loss 31 (0.2) 74 (0.2) 105 (0.2) 

From Table 15 we see that there were 3956; 18,690; and 45,420 subjects in sites 1, 2, and 3, 
respectively. About 75% of subjects at site 3 were in the interacting group, compared with 63% in site 1 
and 58% in site 2. The outcome rate was lowest in site 1 (1.6%), but fairly similar at sites 2 (6.4%) and 3 
(7.3%).  

The most striking difference among sites is in the rate of missing INR data. Most subjects in sites 1 and 2 
have an INR value, approximately 92% in each site. At site 3, only 20% of subjects have an INR value. This 
is likely related to the fact that site 3 is a large national insurer site that contracts with only some of the 
laboratory service vendors that provide laboratory services to their enrollees. The national insurer only 
receives laboratory results values from some laboratory service vendors; thus, it only has laboratory test 
results data for only some of their patients. In contrast, sites 1 and 2 are integrated delivery systems 
with laboratory facilities available within their medical offices and with laboratory test results channeled 
into their electronic medical record databases for essentially all of their enrollees. Thus, the inclusion of 
INR in statistical analyses was based almost entirely on observed data in sites 1 and 2, and almost 
entirely on imputed data in site 3. The sites also differ on proportions of patients with several other 
potential confounders.  
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Table 15. Characteristics of Individuals in the Baseline Confounder Test Case 3 Population, Warfarin 
Users Starting an Antimicrobial Agent by Data Partner Site 

Variable Site 1 
N=3956 (5.8) 

Site 2 
N=18,690 (27.5) 

Site 3 
N=45,420 (66.7) 

Overall 
N=68,066 

N (%) of individuals with interacting 
antimicrobial 2508 (63.4) 10,845 (58.0) 34,117 (75.1) 47,470 (69.7) 

Bleeding diagnosis, inpatient setting 
within 30 days 63 (1.6) 1193 (6.4) 3304 (7.3) 4560 (6.7) 

INR laboratory test result available 3675 (92.9) 17,193 (92.0) 9072 (20.0) 29,940 (44.0) 

INR result, mean (SD) 2.4 (0.8) 2.4 (0.8) 2.4 (1.2) 2.4 (0.9) 

Prior history of any bleed 803 (20.3) 3843 (20.6) 11,845 (26.1) 16,491 (24.2) 

Female sex 1906 (48.2) 8698 (46.5) 20,820 (45.8) 31,424 (46.2) 

Age in years, mean (SD) 71.5 (12.9) 72.5 (12.7) 73.6 (10.3) 73.1 (11.2) 

Race 

  White 3355 (84.8) 15,533 (83.1) 38,372 (84.5) 57,260 (84.1) 

  Black 116 (2.9) 1000 (5.4) 3448 (7.6) 4564 (6.7) 

  Other 50 (1.3) 1598 (8.6) 529 (1.2) 2177 (3.2) 

  Unknown 435 (11.0) 559 (3.0) 3071 (6.8) 4065 (6.0) 

Hispanic ethnicity (Y vs N or unknown) 222 (5.6) 1730 (9.3) 459 (1.0) 2411 (3.5) 

Year of cohort entry 

  2008 219 (5.5) 1159 (6.2) 2672 (5.9) 4050 (6.0) 

  2009 729 (18.4) 3491 (18.7) 7815 (17.2) 12035 (17.7) 

  2010 790 (20.0) 3681 (19.7) 8631 (19.0) 13102 (19.2) 

  2011 815 (20.6) 3577 (19.1) 8968 (19.7) 13360 (19.6) 

  2012 815 (20.6) 3676 (19.7) 9498 (20.9) 13989 (20.6) 

  2013 588 (14.9) 3106 (16.6) 7836 (17.3) 11530 (16.9) 

INR laboratory procedure code (CPT) 3939 (99.6) 18.416 (98.5) 39.734 (87.5) 62.089 (91.2) 

Additional antimicrobial dispensing within 
30 days 91 (2.3) 435 (2.3) 954 (2.1) 1480 (2.2) 

Number of unique medication classes 
dispensed, mean (SD)c 7.4 (4.0) 7.8 (4.0) 8.0 (4.0) 7.9 (4.0) 

Dispensing of non-antimicrobial drug that 
can increase anticoagulant effect/bleeding 
risk of warfarin 1308 (33.1) 6630 (35.5) 19368 (42.6) 27306 (40.1) 

Dispensing of non-antimicrobial drug that 
can decrease anticoagulant 
effect/bleeding risk of warfarin 67 (1.7) 186 (1.0) 739 (1.6) 992 (1.5) 

Number of ambulatory medical visits 
during baseline, mean (SD)c 5.3 (4.7) 6.2 (6.3) 11.6 (7.9) 9.7 (7.8) 

Emergency department visit during 
baseline, N (%) yes c 669 (16.9) 5245 (28.1) 6632 (14.6) 12,546 (18.4) 

Hospitalization during baseline, N (%) yesc 783 (19.8) 3562 (19.1) 11,209 (24.7) 15,554 (22.9) 

Institutional stay during baseline, N (%) 
yesc 142 (3.6) 600 (3.2) 7876 (17.3) 8618 (12.7) 

Comorbidity score, mean (SD) 2.0 (2.3) 1.8 (2.2) 1.9 (2.2) 1.9 (2.2) 

Individual comorbidities c,d     

  Alcohol abuse 65 (1.6) 299 (1.6) 456 (1.0) 820 (1.2) 

  Anemia 104 (2.6) 565 (3.0) 1666 (3.7) 2335 (3.4) 

  Arrhythmia 1783 (45.1) 9662 (51.7) 29,582 (65.1) 41,027 (60.3) 

  Coagulation disorder 106 (2.7) 340 (1.8) 945 (2.1) 1391 (2.0) 

  Congestive heart failure 204 (5.2) 419 (2.2) 4240 (9.3) 4863 (7.1) 

  Diabetes, complicated < 6 (0) < 6 (0) 7 (0) 7 (0) 

  Dementia 27 (0.7) 157 (0.8) 690 (1.5) 874 (1.3) 
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Variable Site 1 
N=3956 (5.8) 

Site 2 
N=18,690 (27.5) 

Site 3 
N=45,420 (66.7) 

Overall 
N=68,066 

  HIV/AIDS < 6 (0) 31 (0.2) 32 (0.1) 64 (0.1) 

  Hypertension 2016 (51.0) 11,287 (60.4) 32,636 (71.9) 45,939 (67.5) 

  Hemiplegia < 6 (0) < 6 (0) < 6 (0) < 6 (0) 

  Liver disease 82 (2.1) 297 (1.6) 630 (1.4) 1009 (1.5) 

  Metastatic cancer <6 (0) <6 (0) <6 (0) <6 (0) 

  Psychosis <6 (0) <6 (0) 12 (0.0) 13 (0.0) 

  Pulmonary disease, chronic <6 (0) <6 (0) 19 (0.0) 20 (0.0) 

  Pulmonary circulation disorder 504 (12.7) 1606 (8.6) 7567 (16.7) 9677 (14.2) 

  Peripheral vascular disease 289 (7.3) 1525 (8.2) 5271 (11.6) 7085 (10.4) 

  Renal failure 57 (1.4) 259 (1.4) 926 (2.0) 1242 (1.8) 

  Tumor, any 129 (3.3) 773 (4.1) 1794 (3.9) 2696 (4.0) 

  Weight loss 6 (0.2) 19 (0.1) 80 (0.2) 105 (0.2) 

c. Baseline Confounder Test Case 3 methods to investigate predictors of missing INR results values 

To understand the relationship between baseline variables and the probability of missing INR, we 
completed logistic regression analyses. First, we conducted a pooled analysis using data from all sites. 
The outcome was present/missing baseline INR result. We fitted univariate models in addition to a 
multivariate model that included all of the predictors. The results are given in Table 16. As expected, site 
is strongest predictor of missingness, with an OR of about 0.02 comparing sites 1 and 2 to site 3 (odds of 
missing was about 50 times higher in site 3 compared to other sites, even after adjusting for the other 
variables). In the adjusted model, variables associated with significantly lower odds of missing were non-
interacting antibiotic, female, older age, Hispanic ethnicity, number of prior inpatient visits, prior history 
of inpatient bleed, and dispensing of a non-antimicrobial drug that can increase anticoagulant 
effect/bleeding risk of warfarin.  
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Table 16. Baseline Confounder Test Case 3, Warfarin Users Starting an Antimicrobial Agent: Odds 
Ratios from Logistic Regression Models of the Probability of Missing INR as a Function of Covariates a 

Variable Unadjusted 
OR (95%CI) 

Adjusted 
OR (95%CI) 

Interacting vs non-interacting reference 1.69 (1.64, 1.75) 1.09 (1.04, 1.15) 

Sex, male reference 0.93 (0.90, 0.96) 0.91 (0.87, 0.95) 
Age, 10 years increments 1.01 (0.99, 1.02) 0.91 (0.89, 0.93) 

Race, White reference 

  Unknown 1.28 (1.20, 1.37) 0.89 (0.81, 0.99) 

  African American 1.22 (1.15, 1.30) 0.92 (0.85, 1.00) 
  Other 0.26 (0.24, 0.29) 0.94 (0.82, 1.08) 

Hispanic ethnicity, yes reference 0.16 (0.15, 0.18) 0.72 (0.61, 0.83) 

Year of cohort entry, 2008 reference 

  2009 0.94 (0.87, 1.01) 0.94 (0.8 , 1.04) 

  2010 0.93 (0.86, 0.99) 0.88 (0.80, 0.98) 

  2011 0.98 (0.92, 1.06) 0.92 (0.83, 1.01) 

  2012 1.00 (0.93, 1.08) 0.91 (0.82, 1.00) 
  2013 1.06 (0.98, 1.14) 1.00 (0.90, 1.10) 

Site, Site 3 reference 

  Site 1 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 

  Site 2 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 
INR laboratory procedure code (CPT code), Yes reference 0.03 (0.02, 0.03)  

Additional antimicrobial dispensing within 30 days, Yes reference 0.94 (0.85, 1.05) 1.00 (0.87, 1.16) 
Number of unique medication classes dispensed 1.01 (1.00, 1.01) 0.99 (0.99, 1.00) 

Number of ambulatory medical visits during baseline 1.08 (1.08, 1.08) 1.02 (1.02, 1.02) 

Emergency department visit during baseline, Yes reference 0.64 (0.61, 0.66) 1.10 (1.04, 1.17) 

Hospitalization during baseline, Yes reference 1.14 (1.10, 1.19) 0.85 (0.81, 0.90) 

Institutional stay during baseline, Yes reference 3.27 (3.10, 3.45) 1.65 (1.54, 1.77) 

Comorbidity score 0.96 (0.96, 0.97) 0.90 (0.89, 0.91) 

Prior history of any bleed, Yes reference 1.04 (1.01, 1.08) 0.80 (0.7 , 0.84) 
Any dispensing of non-antimicrobial drug that can increase anticoagulant 
effect/bleeding risk of warfarin, Yes reference 

1.14 (1.10, 1.17) 0.90 (0.86, 0.94) 

Any dispensing of non-antimicrobial drug that can decrease anticoagulant 
effect/bleeding risk of warfarin, Yes reference 

1.25 (1.10, 1.42) 1.03 (0.87, 1.23) 

a Probability modeled is INR = Missing 
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Table 17. Baseline Confounder Test Case 3, Warfarin Users Starting an Antimicrobial Agent: Odds 
Ratios from Logistic Regression Models of the Probability of Missing INR as a Function of Covariates, 
Site-specific Odds Ratios a 

Variable Site 

Site 1 Site 2 Site 3 

Unadjusted 
OR (95%CI) 

Adjusted 
OR (95%CI) 

Unadjusted 
OR (95%CI) 

Adjusted 
OR (95%CI) 

Unadjusted 
OR (95%CI) 

Adjusted 
OR (95%CI) 

Interacting vs non-interacting 
reference 

1.29  
(0.99, 1.67) 

1.28  
(0.98, 1.67) 

1.08  
(0.97, 1.20) 

1.12  
(1.01, 1.25) 

1.05  
(1.00, 1.11) 

1.08  
(1.02, 1.14) 

Sex, male reference 0.88  
(0.69, 1.12) 

0.92  
(0.72 , 1.18) 

0.81  
(0.73 , 0.90 ) 

0.85  
(0.76, 0.95 ) 

0.94  
(0.90, 0.99 ) 

0.92  
(0.88, 0.96) 

Age, 10 years increments 0.98  
(0.89, 1.07) 

1.01  
(0.92, 1.12) 

0.88  
(0.85, 0.92 ) 

0.89  
(0.85, 0.93 ) 

0.88  
(0.86, 0.90 ) 

0.90  
(0.88, 0.93) 

Race, White reference 

  Unknown 1.23  
(0.86, 1.76) 

1.63  
(1.07 , 2.48) 

1.49  
(1.14, 1.95 ) 

1.40 
 (1.02, 1.92 ) 

0.94  
(0.86, 1.03) 

0.86  
(0.77, 0.97) 

  African American 0.85 
 (0.39, 1.84) 

0.81  
(0.37, 1.79) 

0.92  
(0.72, 1.18) 

0.87  
(0.68, 1.12) 

0.91  
(0.84, 0.99) 

0.93  
(0.85, 1.02) 

  Other 0.27  
(0.04, 1.96) 

0.26  
(0.04, 1.94) 

0.95  
(0.78, 1.15) 

0.87  
(0.72, 1.06) 

1.01  
(0.81, 1.25) 

1.01  
(0.81, 1.26) 

Hispanic ethnicity, Yes reference 0.67  
(0.36, 1.24) 

0.46  
(0.23, 0.95) 

0.96  
(0.80, 1.16) 

0.84  
(0.68, 1.05) 

0.41  
(0.34, 0.49 ) 

0.56  
(0.45, 0.70) 

Year of cohort Entry, 2008 reference 

  2009 0.73  
(0.35, 1.49) 

0.80  
(0.39, 1.64) 

1.03  
(0.80, 1.34) 

1.02  
(0.79, 1.32) 

0.92  
(0.82, 1.03) 

0.93  
(0.83, 1.04) 

  2010 1.17 
(0.59, 2.30) 

1.31  
(0.66, 2.59) 

0.99  
(0.76, 1.28) 

0.95  
(0.74 , 1.24) 

0.84  
(0.75, 0.94) 

0.85  
(0.76, 0.96) 

  2011 1.72  
(0.89, 3.31) 

1.93  
(1.00, 3.75) 

1.11  
(0.86, 1.43) 

1.07  
(0.82, 1.38) 

0.85 
 (0.76, 0.96) 

0.86  
(0.77, 0.96) 

  2012 1.92  
(1.00, 3.68) 

2.17  
(1.12, 4.18) 

1.21  
(0.94, 1.56) 

1.17  
(0.91, 1.52) 

0.83  
(0.74, 0.93) 

0.83  
(0.74, 0.93) 

  2013 1.91  
(0.98, 3.73) 

2.17  
(1.11, 4.26) 

1.48  
(1.15, 1.91) 

1.43  
(1.11, 1.85) 

0.89  
(0.80, 1.00) 

0.89  
(0.79, 1.00) 

INR laboratory procedure code (CPT 
code), Yes reference 

0.00  
(0.00, ) 

NA 0.00  
(0.00, 0.00) 

NA 0.09  
(0.07, 0.10) 

NA 

Additional antimicrobial dispensing 
within 30 days, Yes reference 

0.92  
(0.40, 2.13) 

0.88  
(0.37, 2.06) 

0.55  
(0.35, 0.86) 

0.51  
(0.32, 0.81) 

1.14  
(0.96, 1.34) 

1.13  
(0.96, 1.34) 

Number of unique medication 
classes dispensed 

0.99  
(0.96, 1.02) 

1.04  
(1.00, 1.08) 

0.96  
(0.94, 0.97) 

0.99  
(0.97, 1.00) 

0.99  
(0.99, 1.00) 

0.99  
(0.99, 1.00) 

Number of ambulatory medical 
visits during baseline 

0.94  
(0.91, 0.97) 

0.96  
(0.92, 0.99) 

0.96  
(0.95, 0.97) 

0.98  
(0.97, 0.99) 

1.01  
(1.01, 1.02) 

1.03  
(1.02, 1.03) 

Emergency department visit during 
baseline, Yes reference 

0.68  
(0.47, 0.98) 

0.83  
(0.57, 1.22) 

0.75  
(0.67, 0.85) 

0.90  
(0.78, 1.04) 

1.25  
(1.16, 1.33) 

1.19  
(1.11, 1.28) 

Hospitalization during baseline, Yes 
reference 

0.56  
(0.39, 0.80) 

0.80  
(0.54, 1.18) 

0.67  
(0.58, 0.78) 

0.67  
(0.56, 0.80) 

0.92  
(0.88, 0.97) 

0.88  
(0.83, 0.94) 

Institutional stay during baseline, 
Yes reference 

0.18  
(0.04, 0.73) 

0.27  
(0.06, 1.13) 

1.29  
(0.98, 1.69) 

2.26  
(1.67, 3.07) 

1.52  
(1.42, 1.63) 

1.60  
(1.49, 1.72) 

Comorbidity score 0.90 
(0.85, 0.95) 

0.92  
(0.86, 0.98) 

0.94  
(0.91, 0.96) 

0.99  
(0.96, 1.02) 

0.91  
(0.90, 0.92) 

0.88  
(0.87, 0.89) 

Prior history of any bleed, Yes 
reference 

0.47  
(0.32, 0.68) 

0.50  
(0.34, 0.74) 

0.62  
(0.53, 0.72) 

0.70  
(0.61, 0.82) 

0.78  
(0.74, 0.82) 

0.82  
(0.78, 0.86) 
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Variable Site 

Site 1 Site 2 Site 3 

Unadjusted 
OR (95%CI) 

Adjusted 
OR (95%CI) 

Unadjusted 
OR (95%CI) 

Adjusted 
OR (95%CI) 

Unadjusted 
OR (95%CI) 

Adjusted 
OR (95%CI) 

Any dispensing of non-antimicrobial 
drug that can increase 
anticoagulant effect/bleeding risk of 
warfarin, Yes reference 

0.85  
(0.66, 1.11) 

0.90  
(0.68, 1.20) 

0.73  
(0.65, 0.82) 

0.84  
(0.75, 0.95) 

0.89  
(0.85, 0.93) 

0.91  
(0.86, 0.95) 

Any dispensing of non-antimicrobial 
drug that can decrease 
anticoagulant effect/bleeding risk of 
warfarin, Yes reference 

0.83  
(0.30, 2.29) 

0.92  
(0.32, 2.62) 

0.45  
(0.21, 0.95 ) 

0.55  
(0.25, 1.18) 

1.06  
(0.88, 1.27) 

1.09  
(0.90, 1.32) 

a Probability modeled is INR = Missing 

Similar analysis was also carried out stratified by site (Table 17). We highlight some differences across 
sites. At sites 1 and 2 the odds of missing INR appear to increase over time, but the odds of missing INR 
were more consistent over time at site 3. At site 2 additional antimicrobial dispensing within 30 days 
had significantly lower risk of missing INR (OR 0.51), whereas at site 3 it was positively but non-
significantly associated with missing INR (OR 1.13). Site associations with institutional stays differed 
across sites: OR of 0.27, 2.26, and 1.60 in sites 1-3, respectively (statistically significant at sites 2 and 3). 

d. Baseline Confounder Test Case 3 – Analytic approaches to handle missing INR result values: 
propensity score matching 

The general approach to the strategy for assessing missingness in this test case was to employ PS 
matching to control for confounding. Risk differences and CI were determined from matched data. 

In previous test cases to control for confounding we used regression adjustment (test case 1) and 
inverse probability of treatment weighting (test case 2). In this test case we use PS matching. We fit a PS 
model using logistic regression, with interacting versus non-interacting antimicrobial as the outcome 
and the variables listed in Table 14 as predictors. After we estimated a PS for each subject, we matched 
one-to- one using the SAS macro GMATCH. We matched in the non-interacting antimicrobial group 
because there were fewer subjects in that group. For each subject in the non-interacting group, we 
attempted to find a match from the interacting group. A match was accepted as long as it was within the 
caliper set to 0.2 times the standard deviation of logit of the PS as recommended in Austin.90 To assess 
performance on the matching algorithm, we calculated standardized differences between the treatment 
groups on the matched data for the variables that were in the PS. Standardized differences are 
commonly used to assess balance on covariates, because unlike p-values, they should not decrease with 
sample size. A common rule-of-thumb is that reasonable balance is achieved if the standardized 
differences are less than 0.1 - 0.2 in absolute value.  

Our interest was in the risk difference in the outcome between groups, after controlling for confounding 
via matching. We used PROC GENMOD in SAS with bleeding as the outcome, treatment group as the 
predictor, identity linking to obtain a risk difference, and invoked the REPEATED option to account for 
matching (GEE).  

Because INR was a potential confounder, it was accounted for in the PS. We implemented three 
approaches: (1) do not include INR in the PS; (2) use the indicator method; (3) use MI (predictive mean 
matching). The indicator method (described previously in baseline confounder test case 2) involves 
creating two INR variables: an indicator that INR is observed (yes/no), and INR with missing result values 
set to the same value for all subjects for whom the INR result value is missing (the specific value does 
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not matter; we set it to 0). The same predictive mean matching approach was used as previously 
described in test cases 1 and 2. Ten imputed data sets were created, and for each one the PS was fitted, 
matching was carried out, and the outcome was analyzed. Estimates and standard errors were then 
combined using the methods of Rubin70 to get a single estimate.  

All analyses were conducted overall and separately by site.  

Because we used a caliper, it was likely there would be subjects in the non-interacting group who did 
not match to a subject in the interacting group. In addition, the number of subjects we could find a 
match for could vary, depending on the missing data method used. For example, it is possible that 
subjects that appear to be a good match if we ignore INR might not be a good match if we include INR. 
We report sample sizes from each method in Table 18. Nearly all the 20,596 subjects in the non-
interacting group were matched to a subject in the interacting group, regardless of missing data 
method. For example, the indicator method matched 20,579 of the 20,596 subjects (no matches for 17). 

Table 18. Baseline Confounder Test Case 3, Warfarin Users Starting an Antimicrobial Agent: Sample 
Sizes for Each Treatment Group Overall and by Data Partner Site, Original Sample and for Each 
Imputation Method 

 
 

Overall Site 1 Site 2 Site 3 

Interactin
g 

Non-
Interactin

g 

Interactin
g 

Non-
Interacti

ng 

Interactin
g 

Non-
Interacti

ng 

Interactin
g 

Non-
Interactin

g 

Original 47,470 20,596 2,508 1,448 10,845 7,845 34,117 11,303 

After matching  

Exclude INR 20,578 20,578 1,437 1,437 7,781 7,781 11,302 11,302 

Indicator 20,579 20,579 1,434 1,434 7,783 7,783 11,302 11,302 

Multiple 
Imputation 
(min, max) 

(20,577, 
20,580) 

(20,577, 
20,580) 

(1,434, 
1,436) 

(1,434, 
1,436) 

(7,780, 
7,783) 

(7,780, 
7,783) 

(11,298, 
11,302) 

(11,298, 
11,302) 

To assess the covariate balance after matching, we report standardized differences (Appendix E, 
Supplementary Tables 1 [ignoring INR], 2 [indicator method], and 3 [MI]). For every variable, both by site 
and overall, standardized differences were less than 0.1. Thus, matching achieved acceptable balance. 

e. Baseline Confounder Test Case 3 – Results and Discussion 

Outcome analysis results are in Table 19. For all three missing data methods, the risk difference was 
positive and either statistically significant or nearly significant in pooled analysis. The point estimate 
ranged from 0.05, for the method that ignored INR, to 0.09, for the MI method. For example, a risk 
difference of 0.09 implies that an additional 9 of every 100 subjects would experience bleeding within 
30 days in the interacting group compared to the non-interacting group. The 95%CI was widest for the 
MI method.  
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Table 19. Baseline Confounder Test Case 3, Warfarin Users Starting an Interacting versus Non-
Interacting Antimicrobial Agent: Differences in Risk of Any Inpatient Bleeding Outcome Diagnosis 
within 30 Days between Interacting and Non-Interacting Antimicrobials Prescribed to Patient Taking 
Chronic Warfarin Therapy a 

 All Sites Combined SITE1 SITE2 SITE3 

SD (95%CI) SD (95%CI) SD (95%CI) SD (95%CI) 

Ignore INR   0.05 (-0.03, 0.13) 0.14 (-0.45, 0.74) 0.17 (0.04, 0.30) 0.02 (-0.08, 0.12) 

INR indicator method 0.07 (-0.01, 0.15) 0.38 (-0.19, 0.95) 0.15 (0.01, 0.28) -0.01 (-0.12, 0.09) 

Imputed INR 0.09 (0.00, 0.18) 0.30 (-0.30, 0.90) 0.17 (0.03, 0.30) 0.01 (-0.11, 0.13) 
a Risk differences and 95% CIs. Non-interacting is the reference; a positive risk difference indicates the interacting 
antimicrobial is associated with a higher risk of bleeding 

Site-specific results are also shown in Table 19. Risk differences varied greatly by site. Sites 1 and 2 show 
greatly elevated bleeding risk within 30 days when an interacting vs. non-interacting antimicrobial was 
dispensed (statistically significant in site 2), whereas for site 1 the risk difference shows little difference 
in bleeding risk between interacting and non-interacting antimicrobials. The indicator method and 
predictive mean matching yielded very similar estimates and CI. Predictive mean matching provided 
slightly wider CI. 

In summary, in this test case there were differences between the method that ignored missing 
laboratory result values and the methods that accounted for missing result values. However, the two 
methods that accounted for missing data provided similar results. As in previous test cases, we saw large 
site differences in amount of missing data, predictors of missingness, and outcome.  

4. Additional consideration: number of datasets to impute 

One decision when using MI is the number of imputed datasets to create and analyze. In these test 
cases, we used ten imputed datasets in the primary analyses. Here we briefly discuss considerations 
about the choice of number of datasets as well as sub-analyses that varied the number of replicate 
datasets in baseline confounder test case 2.  

Enders provides a summary of recommendations related to number of datasets.2 Although three to five 
have been historically recommended, Enders notes that the decrease in standard errors as the number 
of imputations increase may be one reason to increase the number of imputed datasets. The relative 
efficiency estimate provided by most MI software quantifies the potential standard error size change 
relative to its theoretical minimum (i.e., estimate that would occur with an infinite number of datasets). 
For example, for a dataset with ten imputations, a relative efficiency of 92% suggests the sampling 
variance (squared standard error) with infinite datasets would be 92% as large as the one estimated 
with ten replicates. Relative efficiency improves with the number of imputations and decreases with 
higher proportions of missing data. From a table of relative efficiency estimates for missing data 
fractions ranging from 10% to 70% and with 3, 5, 10 or 20 imputed datasets, Enders concluded the 
largest gains in efficiency occurred between 3 and 10 datasets. In baseline confounder test case 2, in 
addition to the ten imputed datasets of the primary analysis, we analyzed with 5 and with 20 imputed 
datasets. The results from these additional imputations are in Appendix F. 

5. Additional consideration: technical performance/SAS runtime 

We employed SAS® version 9.3 or 9.4 for all analyses for all baseline confounder test cases. The 
predictive mean matching method and the regression method of imputation had large differences in run 
times. The predictive mean matching methods took longer (several more hours) to complete than did 
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the regression method. As an example, both these methods were used to impute missing serum 
creatinine values in baseline confounder adjustment test case 2. This cohort had 198,265 members with 
45% missing creatinine (n=89,212). MI runs using the regression method in SAS® version 9.4 required 
less than five minutes of run time and less than one minute of CPU time. By contrast, MI using predictive 
mean matching took over five hours and 23 minutes of CPU time. Disparities in run times are important 
considerations. We do not know whether such dramatic differences in run time would occur with other 
software packages.  

6. Summary of the performance of the tested methods across Baseline Confounder Test 
Cases 

Observations about the performance of the tested methods across these three baseline confounder test 
cases include: 

 Covariate associations with missing data varied across sites. Missing data methods need to allow 
for this variability by, for example, conducting imputations within sites or by employing models 
that include site by variable interaction terms. 

 Different missing data methods often provided comparable “answers.”  

 Comparable results were particularly evident in comparisons of two MI methods. Missing 
data estimated by either predictive mean matching or regression imputation resulted in 
identical or very similar point and CI estimates (i.e., differing by no more than 0.01 in both 
test cases 1 and 2).  

 Similar results were evident for the indicator method and MI methods of accounting for 
missing data in the inverse PS weighted models of test case 2.  

 Wider CIs were observed in the meta-analyses that combined site specific imputed results 
compared to pooled data analyses (test case 1). The differences in CIs were likely influenced by 
varied associations in the site specific imputations models. Prior literature has shown much less 
difference between pooled and site specific meta-analyses when data are comparably 
specified.91 As noted above, missing data varied by site. We recommend site specific or other 
methods to appropriately account for such differences.  

 In these test cases, differing analytic models impacted results more strongly than did differing 
missing data methods. For example, in test case 2, MI was used in both regression adjusted 
models and models adjusted by inverse PS weights, and parameter estimates diverged (0.88 vs 
0.96; Models 4 & 10 in Table 13). In contrast, using differing missing data methods (indicator and 
MI) but the same analytic method of inverse PS adjustments produced comparable estimates 
(0.95 vs 0.96; Models 9 & 10 in Table 13). 

 Laboratory test results were strongly associated with outcomes but had limited impact as 
confounder adjustments. Given the variability in missingness patterns for specific laboratory test 
results and across sites, we cannot generalize our finding that laboratory test result adjustments 
will not have substantial impacts on other cohorts or other analyses.  

 Data partner site-specific imputations and data adjustments are recommended due to 
substantive differences in the missing data by site. In addition, site specific models also have the 
advantage of fitting the preferred distributed data analyses of Mini-Sentinel. 
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E. COHORT IDENTIFICATION TEST CASES 

The purpose of the Cohort Identification Test Cases was to determine whether additional individuals 
with a given medical condition were identified, and if so, the magnitude of the gain, when available 
laboratory test results were considered as criteria for cohort inclusion in addition to coded diagnoses 
and procedures. This is different from the purpose of the Baseline Confounder Test Cases, in which we 
used laboratory test results to evaluate baseline confounding and to evaluate the performance of 
missing data techniques. In the Cohort Identification Test Cases, the workgroup also describe the 
characteristics of individuals identified using differing cohort inclusion criteria, the proportions of the 
cohorts with laboratory results data available, and examined cohort-specific research questions. 

1. Cohort Identification Test Case 1: enhanced identification of a pregnancy cohort through 
use of positive qualitative or high quantitative pregnancy test results 

a. Cohort Identification Test Case 1 cohort development 

The workgroup examined whether incorporating “pregnancy hormone” laboratory test results, including 
quantitative or qualitative human chorionic gonadotropin (HCG) values, increased the size of a cohort of 
women identified as pregnant compared to only using pregnancy-related diagnosis and procedure 
codes, which is the typical approach for administrative data. For women who delivered a live born 
infant, the workgroup also determined whether the estimated gestational length changed when 
laboratory test results were included.  

The cohort entry date was the earliest positive indicator of pregnancy, including a positive qualitative or 
quantitative HCG laboratory test result, a prenatal care visit or procedure, or a coded pregnancy 
diagnosis or prenatal procedure. Because the purpose was to enhance identification of a cohort of 
pregnant women, no medical product exposure was required. The list of codes used to identify 
pregnancy is in Appendix G. HCG was defined as positive when the qualitative HCG result was positive or 
the quantitative HCG result was > 25 mIU/mL.92 For each woman, only the first observed pregnancy 
episode within the study timeframe was included.  

The end of pregnancy indicators of interest included term and preterm delivery of a live born infant, 
multiple live births, pregnancy loss including fetal death/stillbirth, ectopic and other extra-uterine 
pregnancies, miscarriage and therapeutic/elective abortion, disenrollment from the health plan, death, 
end of study timeframe, and no end of pregnancy indicator found in the dataset.  

The following research questions were addressed: 

1. How many pregnancies are gained by including pregnancies identified using laboratory test 
results that can include women with pregnancy loss or no live born delivery? 

 Determine the numbers and proportions of pregnancies detected by 

a. Diagnosis and/or procedure codes only  
b. Pregnancy laboratory test results only 
c. Both pregnancy laboratory test results and diagnosis and/or procedure codes. 

 For women with a first pregnancy that includes a pregnancy laboratory test result, describe 
the number of qualitative and/or quantitative HCG laboratory test results per woman. 

 Determine the numbers and proportions of pregnancies detected by each of the methods in 
each of the end of pregnancy categories of interest. 
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2. For women with a live born delivery identified in the dataset whose pregnancies had both coded 
diagnoses or procedures and pregnancy laboratory test results, how does the first positive 
qualitative or quantitative laboratory test result change the timing of when the pregnancy was 
first identified in the electronic data? What is the difference in how early a pregnancy is 
identified when pregnancy laboratory test results are incorporated?  

 What proportion of women have the pregnancy identified earlier using the laboratory test 
result? Summarize the lead time in days or weeks gained by considering the pregnancy 
laboratory test result. 

 What proportion of women have a pregnancy identified earlier using the diagnosis or 
procedure code? Summarize the lead time gained by having the diagnosis or procedure code.  

 Does this differ by data partner site? 

 Using the 270 day metric that has been applied in previous observation studies based only on 
delivery codes (delivery code date minus 270 days is considered the estimated length of 
gestation)93-95 

a. Among the women who have a pregnancy first identified from a pregnancy laboratory 
test result (with or without a diagnosis or procedure code), for what proportion does the 
date of the first positive pregnancy laboratory test result fall within the date range of the 
270 day metric?    

b. Use the 270 day metric to identify the first trimester as the initial 90 days among women 
who have a pregnancy first identified using a pregnancy laboratory test result (with or 
without a diagnosis or procedure code; the laboratory test result can be prior to or after 
the code). Describe how many women have a laboratory test result only in the first 
trimester period versus diagnosis or procedure codes versus both laboratory test result 
and diagnosis or procedure codes. 

Cohort members were women from the three participating data partner sites ages 14 through 50 years 
on the cohort entry date (date of first pregnancy indicator). The date range for the cohort included 
January 1, 2008 – December 31, 2013. Women were required to be enrolled in the health plan and to 
have medical and drug coverage for at least 183 days before the cohort entry date (bridging gaps up to 
45 days) and for at least 270 days after the cohort entry date. Figure 4 shows selection steps that 
resulted in the final cohort (n = 268,219). Further information on the specifications of the test case, such 
as covariate data collected, is in Appendix D.  
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Figure 4. Test Case for Cohort Identification Test Case 1, Enhanced Identification of a Pregnancy 
Cohort through use of Positive Qualitative or Quantitative Pregnancy Test Results 
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b. Cohort Identification Test Case 1 descriptive analysis of missing HCG laboratory test results 

Detailed descriptions of the cohort overall, by site, and by end of pregnancy indicator are in Table 20 
and Table 21. Overall, among the 268,219 women in the cohort, the mean age was 30.5 (SD 7.1) years, 
likely reflecting that, due to the approach to cohort construction (i.e., taking the first observed 
pregnancy during the study period in the dataset for each woman during the date range), the cohort 
included a mixture of women with first and subsequent pregnancies. As shown in Table 21, women 
whose pregnancies ended with abortion were younger (mean age 27.3 years) and women with extra-
uterine pregnancies were older (mean age 34.0 years) than the overall cohort population age. 

Table 20. Characteristics of the Pregnancy Cohort Identification Test Case Population Overall and by 
Site a 

Characteristic Total, N (%) 

Data Partner Site, N (%) 

Site 1 Site 2 Site 3 

Number of women 268,219 24,649 187,471 56,099 

End of pregnancy indicator b 

Single live birth: Term 157,076 (58.6) 15,060 (61.1) 107,675 
(57.4) 

34,341 (61.2) 

Single live birth: Preterm 10,261 (3.8) 974 (4.0) 6,796 (3.6) 2,491 (4.4) 

Abortion 21,357 (8.0) 1,127 (4.6) 19,991 (10.7) 239 (0.4) 

Miscarriage 29,899 (11.1) 2,637 (10.7) 20,696 (11.0) 6,566 (11.7) 

Fetal death 2,006 (0.7) 214 (0.9) 1,440 (0.8) 352 (0.6) 

Extra-uterine 3,146 (1.2) 240 (1.0) 2,127 (1.1) 779 (1.4) 

Abnormal conception product c 2,083 (0.8) 195 (0.8) 1,252 (0.7) 636 (1.1) 

Multiple births 4,027 (1.5) 386 (1.6) 2,614 (1.4) 1,027 (1.8) 

End of pregnancy indicator not found 38,364 (14.3) 3,816 (15.5) 24,880 (13.3) 9,668 (17.2) 

Reason end of pregnancy indicator not found 

Death 7 (0.0) 0 (0.0) 4 (0.0) 3 (0.0) 

End of study (estimated due date beyond 
12/31/2013) 

14,287 (5.3) 1,603 (6.5) 10,015 (5.3) 2,669 (4.8) 

Unable to determine from database 24,070 (9.0) 2,213 (9.0) 14,861 (7.9) 6,996 (12.5) 

Age in years, mean (SD) 30.5 (7.1) 29.7 (6.7) 30.7 (7.3) 30.3 (6.5) 

Race 

White 103,204 (38.5) 15,215 (61.7) 86,856 (46.3) 1,133 (2.0) 

Black 20,122 (7.5) 1,240 (5.0) 18,521 (9.9) 361 (0.6) 

Other 49,285 (18.4) 1,389 (5.6) 47,863 (25.5) 33 (0.1) 

Unknown 95,608 (35.6) 6,805 (27.6) 34,231 (18.3) 54,572 (97.3) 

Hispanic ethnicity (Y vs N/unknown) 51,794 (19.3) 4,240 (17.2) 47,445 (25.3) 109 (0.2) 

Qualitative or Quantitative HCG lab result value d 

No HCG lab result 127,613 (47.6) 7,919 (32.1) 76,108 (40.6) 43,586 (77.7) 

Only negative HCG lab result 21,368 (8.0) 1,518 (6.2) 18,538 (9.9) 1,312 (2.3) 

1+ Positive HCG lab result; women with lab 
result and no pregnancy diagnosis 

13,665 (5.1) 679 (2.8) 12,582 (6.7) 404 (0.7) 

1+ Positive HCG lab result; women with 
diagnosis and lab result 

105,573 (39.4) 14,533 (59.0) 80,243 (42.8) 10,797 (19.2) 

Qualitative HCG lab 

No Qualitative HCG lab result 175,406 (65.4) 15,535 (63.0) 105,342 
(56.2) 

54,529 (97.2) 

Only negative Qualitative HCG lab result 22,882 (8.5) 2,884 (11.7) 19,312 (10.3) 686 (1.2) 

1+ Positive Qualitative HCG lab; women with 
lab result and no pregnancy diagnosis 

10,213 (3.8) 420 (1.7) 9,692 (5.2) 101 (0.2) 

1+ Positive Qualitative HCG lab; women with 
pregnancy diagnosis and lab result 

59,718 (22.3) 5,810 (23.6) 53,125 (28.3) 783 (1.4) 
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Characteristic Total, N (%) 

Data Partner Site, N (%) 

Site 1 Site 2 Site 3 

Quantitative HCG lab d 

No Quantitative HCG lab result 190,236 (70.9) 11,091 (45.0) 134,599 
(71.8) 

44,546 (79.4) 

Only negative Quantitative HCG lab result 9,443 (3.5) 412 (1.7) 8,153 (4.3) 878 (1.6) 

1+ Positive Quantitative HCG lab; women 
with lab results and no pregnancy diagnosis 

4,604 (1.7) 361 (1.5) 3,921 (2.1) 322 (0.6) 

1+ Positive Quantitative HCG lab result; 
women with pregnancy diagnosis and lab 
result 

63,936 (23.8) 12,785 (51.9) 40,798 (21.8) 10,353 (18.5) 

Medical Utilization e 

No encounters prior to first pregnancy 
indicator 

55 (0.0) 2 (0.0) 33 (0.0) 20 (0.0) 

Ambulatory visits, mean (SD) 6.4 (7.1) 6.6 (7.5) 6.6 (7.2) 5.7 (6.5) 

Emergency department visits, % yes 31,408 (11.7) 2,534 (10.3) 22,541 (12.0) 6,333 (11.3) 

Hospitalization, % yes 10,398 (3.9) 668 (2.7) 8,373 (4.5) 1,357 (2.4) 

Institutional stay, % yes 1,399 (0.5) 2 (0.0) 57 (0.0) 1,340 (2.4) 

HCG injections 6,037 (2.3) 570 (2.3) 5,288 (2.8) 179 (0.3) 

Tumor that may influence HCG 1,769 (0.7) 77 (0.3) 1,413 (0.8) 279 (0.5) 
a Women included in the cohort have enrollment in the health plan for at least 183 days prior to the cohort entry date and 
270 days after the cohort entry date. Cohort entry date is the date of first indicator of pregnancy (i.e., diagnosis code, 
procedure code, or positive laboratory test result) 
b Within 270 days after the cohort entry date 
c ICD9 codes 630, 631 (i.e. Hydatidiform mole or other abnormal products of conception)  
d Quantitative lab considered positive if >25 mIU/mL 
e During 183 days prior to cohort entry (earliest pregnancy indicator). Women with no HCG result or with only negative 
HCG result entered the cohort through a pregnancy-related diagnosis or procedure code 

As shown in Table 20, 52.4% of the women had at least one HCG laboratory test result (i.e., 47.6% had 
no HCG laboratory test result). Importantly, this proportion included 5.1% with a positive HCG result 
value and no pregnancy-related diagnosis or procedure code. Availability of HCG test results varied by 
site, with 22.3% at site 3 having at least one HCG test result (i.e., 77.7% with no HCG lab result), to 
59.4% at site 2 having at least one HCG test result, to 67.9% at site 1 having at least on HCG test result 
(Table 20). The 47.6% with no HCG laboratory test result included 8.9% (n = 23,741) of women with no 
indicator of pregnancy until the end of pregnancy indicator was coded. 

Across the cohort, 62.4% had a pregnancy that ended with a full term or preterm single live birth, 1.5% 
ended with multiple births, 19.1% ended with miscarriage or abortion, and 0.7% ended with fetal 
demise (Table 20). Additionally, 1.2% of pregnancies were extra-uterine and 0.8% contained an 
abnormal product of conception. No end of pregnancy indicator was found for 14.3%, many of whom 
(5.3%) had an estimated due date beyond the end of the study period.  

End of pregnancy percentages varied by site, particularly for abortion (from 0.4% at site 3 to 10.7% at 
site 2)(Table 20). Personal communication with site 3 suggests site 3 may less often provide insurance 
coverage for abortion (than do sites 1 or 2). It is also feasible there is less interest or willingness of 
providers affiliated with site 3 to refer members for abortions, as well as less access by members to that 
service. These factors may correlate with site 3 having a higher proportion of membership in 
conservative geographic regions of the United States that have more stringent state regulation of 
providers (than do sites 1 or 2).  

Table 21 shows that, among the 5.1% (13,665 of 268,219) of women who had a positive HCG laboratory 
test result and no pregnancy-related diagnosis or procedure code, approximately 75% had a pregnancy 
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loss recorded (e.g., 6,953 had an abortion, 3,014 had a miscarriage, 274 had an extra-uterine pregnancy) 
and 22.5% (n = 3,081) had no end of pregnancy indicator recorded in the database.  

In addition, relative to the overall proportion of women in the cohort (52.4% with a HCG result), a higher 
proportion of women with pregnancy losses had HCG results, including women with an abortion 
(72.8%), miscarriage (67.4%), fetal death (58.7%), extra-uterine pregnancies (65.1%), and an abnormal 
product of conception (69.9%). A lower proportion of women with single live births had HCG results, 
including 46.7% of women with term births and 48.5% of women with preterm births. Also, women with 
certain subsets of pregnancy losses (miscarriage, fetal death, extra-uterine pregnancy, abnormal 
products of conception) had more HCG laboratory test results than did women with single live births, 
whether or not the women also had a pregnancy diagnosis code. The highest mean (SD) number of HCG 
results was 4.5 (3.0) in women with extra-uterine pregnancies. Women with multiple births and those 
with no end of pregnancy indicator found also had a higher number of HCG results than women with 
single live births. In all subsets with more HCG laboratory result values available (i.e., a higher number of 
HCG results), the increase was driven by the number of quantitative HCG results. 

Table 21. Characteristics of the Pregnancy Cohort Identification Population by End of Pregnancy 
Indicator a 

Characteristic Total 
N = 

268,219 
(100%) 

Single Live Birth Pregnancy Loss Multiple 
births 

N = 
4,027 
(1.5%) 

No end of 
pregnancy 
indicator 

found 
N = 38,364 

(14.3%) 

Term 
N = 

157,076 
(58.6%) 

Preterm 
N = 

10,261 
(3.8%) 

Abortion 
N = 

21,357 
(8.0%) 

Miscarriage 
 N = 29,899 

(11.1%) 

Fetal 
death 
 N = 

2,006 
(0.7%) 

Extra-
uterine 

N = 
3,146 
(1.2%) 

Abnormal 
conception 

b 

N = 2,083 
(0.8%) 

Age in years, 
mean (SD) 

30.5 
(7.1) 

30.5 
(6.7) 

29.8 
(6.2) 

27.3 
(7.8) 

31.6 (6.8) 31.4 
(6.4) 

34.0 
(7.8) 

31.6 (7.1) 31.9 
(5.7) 

31.1 (8.0) 

Qualitative (QL) or Quantitative (QN) HCG lab result c 

No HCG lab 
result 

127,613 
(47.6) 

83,690 
(53.3) 

5,282 
(51.5) 

5,803 
(27.2) 

9,737 
(32.6) 

829 
(41.3) 

1,098 
(34.9) 

628 (30.1) 1,966 
(48.8) 

18,580 
(48.4) 

Only 
negative 
HCG lab 
result 

21,368 
(8.0) 

12,741 
(8.1) 

358 
(3.5) 

743 (3.5) 1,742 (5.8) 74 
(3.7) 

857 
(27.2) 

75 (3.6) 107 
(2.7) 

4,671 (12.2) 

> 1 Positive 
HCG lab; 
women 
with lab 
result and 
no 
pregnancy 
(PG) 
diagnosis 

13,665 
(5.1) 

28 (0.0) 107 
(1.0) 

6,953 
(32.6) 

3,014 
(10.1) 

16 
(0.8) 

274 
(8.7) 

192 (9.2) 0 (0.0) 3,081 (8.0) 

N of 
labs, 
mean 
(SD) 

1.3 
(0.8) 

1.2 
(0.4) 

1.1 (0.4) 1.1 (0.3) 1.5 (0.9) 1.6 
(1.1) 

1.9 
(1.4) 

1.6 (1.0) 0 1.5 (1.3) 

> 1 Positive 
HCG lab; 
women 
with PG 
diagnosis 
and lab 
result 

105,573 
(39.4) 

60,617 
(38.6) 

4,514 
(44.0) 

7,858 
(36.8) 

15,406 
(51.5) 

1,087 
(54.2) 

917 
(29.1) 

1,188 
(57.0) 

1,954 
(48.5) 

12,032 
(31.4) 
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Characteristic Total 
N = 

268,219 
(100%) 

Single Live Birth Pregnancy Loss Multiple 
births 

N = 
4,027 
(1.5%) 

No end of 
pregnancy 
indicator 

found 
N = 38,364 

(14.3%) 

Term 
N = 

157,076 
(58.6%) 

Preterm 
N = 

10,261 
(3.8%) 

Abortion 
N = 

21,357 
(8.0%) 

Miscarriage 
 N = 29,899 

(11.1%) 

Fetal 
death 
 N = 

2,006 
(0.7%) 

Extra-
uterine 

N = 
3,146 
(1.2%) 

Abnormal 
conception 

b 

N = 2,083 
(0.8%) 

N of 
labs, 
mean 
(SD) 

1.8 
(1.3) 

1.5 
(0.9) 

1.7 (1.1) 1.5 (1.1) 2.4 (1.5) 2.1 
(1.8) 

4.5 
(3.0) 

3.0 (2.0) 2.0 (1.2) 2.2 (1.9) 

QL HCG lab result 

No QL HCG 
lab 

175,406 
(65.4) 

107,961 
(68.7) 

7,056 
(68.8) 

7,664 
(35.9) 

19,066 
(63.8) 

1,265 
(63.1) 

1,944 
(61.8) 

1,393 
(66.9) 

3,073 
(76.3) 

25,984 
(67.7) 

Only 
negative 
QL HCG lab 

22,882 
(8.5) 

13,873 
(8.8) 

577 
(5.6) 

987 (4.6) 2,129 (7.1) 135 
(6.7) 

765 
(24.3) 

168 (8.1) 289 
(7.2) 

3,959 (10.3) 

> 1 Positive 
QL HCG 
lab; 
women 
with lab 
result only 

10,213 
(3.8) 

11 (0.0) 26 (0.3) 6,554 
(30.7) 

1,283 (4.3) 12 
(0.6) 

113 
(3.6) 

51 (2.4) 0 (0.0) 2,163 (5.6) 

N of 
labs, 
mean 
(SD) 

1.0 
(0.2) 

1.0 
(0.0) 

1.0 (0.2) 1.0 (0.1) 1.0 (0.2) 1.1 
(0.3) 

1.1 
(0.4) 

1.0 (0.2) . (.) 1.0 (0.2) 

> 1 Positive 
QL HCG 
lab; 
women 
with 
diagnosis 
and lab 
result 

59,718 
(22.3) 

35,231 
(22.4) 

2,602 
(25.4) 

6,152 
(28.8) 

7,421 
(24.8) 

594 
(29.6) 

324 
(10.3) 

471 (22.6) 665 
(16.5) 

6,258 (16.3) 

N of 
labs, 
mean 
(SD) 

1.0 
(0.2) 

1.0 
(0.2) 

1.1 (0.2) 1.1 (0.2) 1.1 (0.2) 1.1 
(0.3) 

1.1 
(0.4) 

1.1 (0.3) 1.0 (0.3) 1.1 (0.2) 

QN HCG lab result c 

No QN 
HCG lab 

190,236 
(70.9) 

119,644 
(76.2) 

7,341 
(71.5) 

17,313 
(81.1) 

13,623 
(45.6) 

1,253 
(62.5) 

1,680 
(53.4) 

738 (35.4) 2,467 
(61.3) 

26,177 
(68.2) 

Only 
negative 
QN HCG 
lab 

9,443 
(3.5) 

3,775 
(2.4) 

153 
(1.5) 

452 (2.1) 1,533 (5.1) 23 
(1.1) 

306 
(9.7) 

61 (2.9) 57 (1.4) 3,083 (8.0) 

> 1 Positive 
QN HCG; 
women 
with lab 
result and 
no PG 
diagnosis 

4,604 
(1.7) 

19 (0.0) 88 (0.9) 590 (2.8) 2,307 (7.7) 6 (0.3) 263 
(8.4) 

179 (8.6) 0 (0.0) 1,152 (3.0) 

N of 
labs, 
mean 
(SD) 

1.5 
(1.2) 

1.2 
(0.4) 

1.0 (0.2) 1.3 (0.8) 1.3 (0.8) 2.2 
(1.6) 

1.5 
(1.2) 

1.4 (0.9) . (.) 2.1 (1.7) 
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Characteristic Total 
N = 

268,219 
(100%) 

Single Live Birth Pregnancy Loss Multiple 
births 

N = 
4,027 
(1.5%) 

No end of 
pregnancy 
indicator 

found 
N = 38,364 

(14.3%) 

Term 
N = 

157,076 
(58.6%) 

Preterm 
N = 

10,261 
(3.8%) 

Abortion 
N = 

21,357 
(8.0%) 

Miscarriage 
 N = 29,899 

(11.1%) 

Fetal 
death 
 N = 

2,006 
(0.7%) 

Extra-
uterine 

N = 
3,146 
(1.2%) 

Abnormal 
conception 

b 

N = 2,083 
(0.8%) 

> 1 Positive 
QN HCG; 
women 
with PG 
diagnosis 
and lab 
results 

63,936 
(23.8) 

33,638 
(21.4) 

2,679 
(26.1) 

3,002 
(14.1) 

12,436 
(41.6) 

724 
(36.1) 

897 
(28.5) 

1,105 
(53.0) 

1,503 
(37.3) 

7,952 (20.7) 

N of 
labs, 
mean 
(SD) 

2.0 
(1.4) 

1.7 
(1.0) 

1.9 (1.1) 1.9 (1.4) 2.4 (1.4) 2.3 
(1.9) 

4.2 
(2.9) 

2.8 (1.9) 2.2 (1.1) 2.4 (2.1) 

HCG 
injections 

6,037 
(2.3) 

2,178 
(1.4) 

183 
(1.8) 

82 (0.4) 1,256 (4.2) 81 
(4.0) 

130 
(4.1) 

102 (4.9) 505 
(12.5) 

1,520 (4.0) 

Tumor that 
may 
influence 
HCG 

1,769 
(0.7) 

951 
(0.6) 

44 (0.4) 50 (0.2) 98 (0.3) 5 (0.2) 304 
(9.7) 

20 (1.0) 19 (0.5) 278 (0.7) 

a Within 270 days after the cohort entry date 
b ICD9 codes 630, 631 (i.e. Hydatidiform mole or other abnormal products of conception)  
c Quantitative lab considered positive if >25 mIU/mL 

The subset of women with only a negative HCG test result (8.0% of the cohort; n = 21,368) by definition 
entered the cohort as a result of either a prenatal diagnosis or procedure code (n = 10,858) or a coded 
pregnancy outcome (n = 10,510). Among the 10,858 women with a prenatal diagnosis or procedure 
code in the database, the most common initial codes were normal pregnancy, ultrasound of pregnant 
uterus, and hemorrhage in early pregnancy. These women often had a negative HCG result value with a 
prenatal diagnosis coded up to a few weeks later (and no additional HCG results). In a few situations, the 
coded prenatal diagnosis or procedure was followed by a negative qualitative or low (< 25 mIU/mL) 
quantitative HCG result value. Also, a higher proportion of women with extra-uterine pregnancies only 
had negative HCG result values (27.2% of the extra-uterine pregnancies versus 8.0% of the cohort 
overall). The proportion of this subset of women with a pregnancy that ended in a full term or preterm 
single live birth was similar to that of the cohort overall (61.3% in the subset; 62.4% in the full cohort; 
not shown in table). A greater proportion of this 8.0% subset of women had no end of pregnancy 
indicator in the database (21.9% versus 14.3% in the full cohort).  

The subset of women with a pregnancy identified only by a positive HCG result value (5.1%; n = 13,665) 
and no prenatal diagnosis or procedure code (74.7% had a qualitative HCG result; 33.7% had a 
quantitative HCG result) had end of pregnancy indicators that differed dramatically from those of the 
full cohort (Table 22). Only 1.0% (n = 135) had a pregnancy that ended in a full term or preterm single 
live birth. 50.9% ended in abortion, 22.1% ended in miscarriage, and 22.5% had no end of pregnancy 
indicator found. As shown in Table 22, these women’s end of pregnancy indicators varied noticeably by 
site (e.g., abortions: 54.7% at site 2, 0.7% at site 3; no end of pregnancy indicator found: 20.4% at site 2, 
52.0% at site 3). The demographics and other characteristics of this subset of women are also in Table 
22. 
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Table 22. Characteristics of the 5.1% Subset of the Pregnancy Cohort Identified by Positive Lab Result 
Only, Overall and by Site 

Characteristic Total, N (%) 

Data Partner Site, N (%) 

Site 1 Site 2 Site 3 

Number of women 13,665 679 12,582 404 

End of pregnancy indictor b 

Single live birth: Term 28 (0.2) 6 (0.9) 18 (0.1) 4 (1.0) 

Single live birth: Preterm 107 (0.8) 7 (1.0) 97 (0.8) 3 (0.7) 

Abortion 6,953 (50.9) 73 (10.8) 6,877 (54.7) 3 (0.7) 

Miscarriage 3,014 (22.1) 226 (33.3) 2,649 (21.1) 139 (34.4) 

Fetal death 16 (0.1) 0 (0.0) 16 (0.1) 0 (0.0) 

Extra-uterine 274 (2.0) 27 (4.0) 215 (1.7) 32 (7.9) 

Abnormal conception product c 192 (1.4) 32 (4.7) 147 (1.2) 13 (3.2) 

Multiple births 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

No end of pregnancy indicator found 3,081 (22.5) 308 (45.4) 2,563 (20.4) 210 (52.0) 

Reason end of pregnancy indicator not found 

Death 2 (0.0) 0 (0.0) 2 (0.0) 0 (0.0) 

End of study (estimated due date beyond 
12/31/2013) 

613 (4.5) 65 (9.6) 511 (4.1) 37 (9.2) 

Unknown 2,466 (18.0) 243 (35.8) 2,050 (16.3) 173 (42.8) 

Age in years, mean (SD) 29.0 (7.8) 29.0 (7.5) 28.9 (7.8) 31.8 (7.2) 

Race 

White 5,311 (38.9) 408 (60.1) 4,882 (38.8) 21 (5.2) 

Black 2,288 (16.7) 57 (8.4) 2,225 (17.7) 6 (1.5) 

Other 3,012 (22.0) 36 (5.3) 2,975 (23.6) 1 (0.2) 

Unknown 3,054 (22.3) 178 (26.2) 2,500 (19.9) 376 (93.1) 

Hispanic ethnicity (Y vs N/unknown) 2,948 (21.6) 134 (19.7) 2,812 (22.3) 2 (0.5) 

Qualitative or Quantitative HCG lab result value d 

No HCG lab result 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Only negative HCG lab result 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

1+ Positive HCG lab result; women with lab 
result and no pregnancy diagnosis 

13,665 (100.0) 679 (100.0) 12,582 
(100.0) 

404 (100.0) 

1+ Positive HCG lab result; women with 
diagnosis and lab result 

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Qualitative HCG lab 

No Qualitative HCG lab result 2,986 (21.9) 180 (26.5) 2,514 (20.0) 292 (72.3) 

Only negative Qualitative HCG lab result 466 (3.4) 79 (11.6) 376 (3.0) 11 (2.7) 

1+ Positive Qualitative HCG lab; women with 
lab result and no pregnancy diagnosis 

10,213 (74.7) 420 (61.9) 9,692 (77.0) 101 (25.0) 

1+ Positive Qualitative HCG lab; women with 
pregnancy diagnosis and lab result 

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Quantitative HCG lab e 

No Quantitative HCG lab result 8,635 (63.2) 293 (43.2) 8,271 (65.7) 71 (17.6) 

Only negative Quantitative HCG lab result 426 (3.1) 25 (3.7) 390 (3.1) 11 (2.7) 

1+ Positive Quantitative HCG lab; women 
with lab results and no pregnancy diagnosis 

4,604 (33.7) 361 (53.2) 3,921 (31.2) 322 (79.7) 

1+ Positive Quantitative HCG lab result; 
women with pregnancy diagnosis and lab 
result 

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Medical Utilization d 

No encounters prior to first pregnancy 
indicator 

11 (0.1) 1 (0.1) 4 (0.0) 6 (1.5) 

Ambulatory visits, mean (SD) 6.1 (7.5) 8.3 (8.7) 5.9 (7.4) 7.3 (7.4) 

Emergency department visits, % yes 2,023 (14.8) 91 (13.4) 1,882 (15.0) 50 (12.4) 
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Characteristic Total, N (%) 

Data Partner Site, N (%) 

Site 1 Site 2 Site 3 

Hospitalization, % yes 217 (1.6) 9 (1.3) 196 (1.6) 12 (3.0) 

Institutional stay, % yes 19 (0.1) 0 (0.0) 5 (0.0) 14 (3.5) 

HCG injections 319 (2.3) 40 (5.9) 277 (2.2) 2 (0.5) 

Tumor that may influence HCG 28 (0.2) 2 (0.3) 23 (0.2) 3 (0.7) 
a Women included in the cohort have enrollment in the health plan for at least 183 days prior to the cohort entry date and 
270 days after the cohort entry date. Cohort entry date is the date of first indicator of pregnancy (i.e., diagnosis code, 
procedure code, or laboratory test result) 
b Within 270 days after the cohort entry date 
c ICD9 codes 630, 631 (i.e. Hydatidiform mole or other abnormal products of conception)  
d Quantitative lab considered positive if >25 mIU/mL 
e During 183 days prior to cohort entry (earliest pregnancy indicator) 

Included among the 47.6% of the cohort with no HCG laboratory result (N = 127,613, Tables 20 and 21) 
were a subset of women whose pregnancy was not identified until there was a coded end of pregnancy 
indictor in the database (Table 23; 8.9% of the cohort, N = 23,741). These women had term or preterm 
single live births at a proportion similar to the full cohort (59.7% in this subset versus 62.4% in the full 
cohort). However, 31.5% of the pregnancies in this subset of women ended in abortion or miscarriage 
(19.1% in the full cohort) and 6.9% of these pregnancies were extra-uterine (1.2% in the full cohort).  

Table 23. End of Pregnancy Indicator for the 8.9% Subset of the Pregnancy Cohort with No Prior 
Pregnancy Indicator, Overall and by Site 

End of Pregnancy Indicator Total, N (%) Data Partner Site, N (%) 

Site 1 Site 2 Site 3 

Number of women 23,741 1,922 18,092 3,727 

Single live birth: Term 13,561 (57.1) 931 (48.4) 11,543 (63.8) 1,087 (29.2) 

Single live birth: Preterm 616 (2.6) 119 (6.2) 357 (2.0) 140 (3.8) 

Abortion 2,467 (10.4) 216 (11.2) 2,190 (12.1) 61 (1.6) 

Miscarriage 4,998 (21.1) 528 (27.5) 2,591 (14.3) 1,879 (50.4) 

Fetal death 65 (0.3) 8 (0.4) 39 (0.2) 18 (0.5) 

Extra-uterine 1,636 (6.9) 96 (5.0) 1,218 (6.7) 322 (8.6) 

Abnormal conception product 308 (1.3) 12 (0.6) 111 (0.6) 185 (5.0) 

Multiple births 90 (0.4) 12 (0.6) 43 (0.2) 35 (0.9) 

No end of pregnancy indicator found 0 0 0 0 

c. Cohort Identification Test Case 1 results and discussion 

Pregnancies gained by including those identified using laboratory results only (research question 1)  

For 5.1% of the cohort (N = 13,665), the only indicator of the pregnancy in the database was a positive 
qualitative or quantitative HCG result (i.e., no pregnancy-related diagnosis or procedure code). This 
ranged from 0.7% at site 3 to 6.7% at site 2 (Tables 20 and 24). An additional 39.4% (N = 105,573) of 
women had both a positive HCG result and a prenatal diagnosis or procedure code; 46.7% (N = 125,240) 
of women had only a prenatal diagnosis or procedure code.  

For 8.9% (N = 23,741) of the cohort, the pregnancy was not documented until the pregnancy outcome 
was coded (Table 24). This subset includes many women without prenatal care. It also includes women 
for whom data from the entire pregnancy was not available (N = 2012, 8.5% [of 23,741]; site variability 
within this subset: 7.8% at site 1, 4.4% at site 2, 28.6% at site 3). That is, women were required to have a 
minimum of 183 days of enrollment prior to cohort entry, but for 2012 women, their enrollment length 
was between 183 and 270 days prior to pregnancy outcome, so their enrollment likely did not extend 
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back in time far enough to include early codes or HCG results that might have been available, 
particularly for term pregnancies. However, this does not mitigate the fact that these women did not 
have any other evidence of their pregnancies during their enrollment within the 183 days prior to their 
pregnancy outcomes. 

Table 24. Pregnancy Identification by Pregnancy Indicator, Overall and by Site 

First Pregnancy Indicator 
Total  

N =268,219 (%) 

Data Partner Site 

Site 1 
N = 24,649 (%) 

Site 2 
N = 187,471 (%) 

Site 3 
N = 56,099 (%) 

Prenatal diagnosis or procedure only 125,240 (46.7) 7,515 (30.5) 76,554 (40.8) 41,171 (73.4) 

Prenatal positive lab result only 13,665 (5.1) 679 (2.8) 12,582 (6.7) 404 (0.7) 

Prenatal diagnosis or procedure and positive 
lab result 

105,573 (39.4) 14,533 (59.0) 80,243 (42.8) 10,797 (19.2) 

End of pregnancy indicator only 23,741 (8.9) 1,922 (7.8) 18,092 (9.7) 3,727 (6.6) 

Table 25 presents the number and percent of each end of pregnancy indicator type that were identified 
by HCG results only. The percent of pregnancies indicated by only an HCG result varied dramatically 
across end of pregnancy indicator types, ranging from 0% among single live term and multiple births, to 
32.6% among pregnancies that ended with abortion. 

Table 25. Number and Percent of Pregnancies Identified by HCG Laboratory Test Results Only, 
Stratified by End of Pregnancy Indicator, Overall and by Site 

End of Pregnancy Indicator Number with Prenatal Positive Lab Result Only divided by Total Number with that 
End of Pregnancy Indicator (%) 

Total (%) Data Partner Site, N (%) 

Site 1 Site 2 Site 3 

Term single live births 28/157,076 (0.0) 6/15,060 (0.0) 18/107,675 (0.0) 4/34,341 (0.0) 

Preterm single live births 107/10,261 (1.0) 7/974 (0.7) 97/6,796 (1.4) 3/2,491 (0.1) 

Abortions 6,953/21,357 (32.6) 73/1,127 (6.5) 6,877/19,991 (34.4) 3/239 (1.3) 

Miscarriages 3,014/29,899 (10.1) 226/2,637 (8.6) 2,649/20,696 (12.8) 139/6,566 (2.1) 

Fetal deaths 16/2,006 (0.8) 0/214 (0.0) 16/1,440 (1.1) 0/352 (0.0) 

Extra-uterine pregnancies 274/3,146 (8.7) 27/240 (11.3) 215/2,127 (10.1) 32/779 (4.1) 

Abnormal product of conception 192/2,083 (9.2) 32/195 (16.4) 147/1,252 (11.7) 13/636 (2.0) 

Multiple births 0/4,027 (0.0) 0/386 (0.0) 0/2,614 (0.0) 0/1,027 (0.0) 

End of pregnancy indicator not 
found 

3,081/38,364 (8.0) 308/3,816 (8.1) 2.563/24,880 (10.3) 210/9,668 (2.2) 

Total 13,665 679  12,582 404 

How the first positive laboratory result changes the timing of when the pregnancy was first identified 
in the electronic data 

Table 26 indicates that, in the electronic database, among women with a positive HCG result, 60.7% (n = 
39,559) had their pregnancy identified earlier using the HCG result than using the diagnosis or 
procedure code (range across sites: 19.3% at site 3 to 73.9% at site 2). For 19.6% (n = 12,742) of women, 
the first positive HCG result and the prenatal diagnosis or procedure code occurred on the same date 
(range across sites: 14.9% at site 1 to 22.5% at site 3). For 19.7% (n = 12,830), the positive HCG result 
date was later than the date of the coded prenatal diagnosis or procedure (range across sites: 6.0% at 
site 2 to 58.2% at site 3).  
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Table 26. First Pregnancy Indicator among Pregnancies with Prenatal Positive Lab Result and Prenatal 
Diagnosis or Procedure Code and Single Live Birth Diagnosis or Procedure Code, Overall and by Site 

Pregnancy Indicator 
Total, 

N = 65,131 (%) 

Data Partner Site 

Site 1 
N =10,395 (%) 

Site 2 
N = 46,824 (%) 

Site 3 
N = 7,912 (%) 

Positive lab result occurs before 
diagnosis/procedure code 

39,559 (60.7) 3,433 (33.0) 34,596 (73.9) 1,530 (19.3) 

Positive lab result occurs on the same day as the 
diagnosis/procedure code 

12,742 (19.6) 1,548 (14.9) 9,413 (20.1) 1,781 (22.5) 

Positive lab result occurs after 
diagnosis/procedure code 

12,830 (19.7) 5,414 (52.1) 2,815 (6.0) 4,601 (58.2) 

For the subset of women with live births whose first pregnancy indicators were both a prenatal coded 
diagnosis or procedure and HCG results, the first positive HCG result was documented in the electronic 
database a mean (SD) of 15.7 (12.2) days before the prenatal diagnosis or procedure code (Table 27). 
For women with abortion or miscarriage, the mean time the positive HCG result was recorded in the 
electronic database was 11.6 (15.7) days prior to the prenatal diagnosis or procedure code (Table 27).  

Table 27. Lead Time of Positive HCG Laboratory Test Result Prior to Prenatal Diagnosis or Procedure 
Codes among Pregnancies with a Live Birth, Abortion, or Miscarriage that had Both Prenatal Diagnosis 
or Procedure Codes and Laboratory Test Results, Overall and by Site 

Characteristic Total, N (%) Data Partner Site, N (%) 

Site 1 Site 2 Site 3 

Single live birth: Term or Preterm, N 39,559 3,433 34,596 1,530 

   Days lead time, mean (SD) 15.7 (12.2) 16.9 (11.8) 15.6 (12.0) 17.4 (17.2) 

Pregnancy loss: Abortion or Miscarriage, N 13,655 848 12,490 317 

   Days lead time, mean (SD) 11.6 (15.7) 13.6 (20.2) 11.6 (15.5) 9.6 (9.0) 

For women where the first indicator of pregnancy was the HCG result in the distributed database, the 
vast majority (n = 51,440, 98.1%) of estimated gestational periods fell within the 270 day gestational age 
metric applied in previous observation studies that did not consider laboratory indicators of pregnancy 
(metric: delivery code date minus 270 days equals estimated length of gestation 93-95 )(Table 28). The 
small proportion of pregnancies with a positive HCG result outside the estimated gestational period 
were most often associated with a conflicting coded diagnoses (e.g., a coded live birth and a coded 
miscarriage that appeared to apply to the same pregnancy episode; Table 28). 
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Table 28. Positive HCG Laboratory Test Result within Estimated Gestation Period a among Pregnancies 
with Prenatal Positive HCG Laboratory Test Result Only or with both a Positive HCG Laboratory Test 
Result Prior to a Prenatal Diagnosis or Procedure Code and a Single Live Birth Diagnosis or Procedure 
Code, Overall and by Site 

Characteristic Total 
N = 52,436 (%) 

Data Partner Site 

Site 1 
N = 4,994 (%) 

Site 2 
N = 44,124 (%) 

Site 3 
N = 3,318 (%) 

Positive lab within estimated gestation period 51,440 (98.1) 4,915 (98.4) 43,287 (98.1) 3,238 (97.6) 

Positive lab outside estimated gestation period 996 (1.9) 79 (1.6) 837 (1.9) 80 (2.4) 

Conflicting end of pregnancy diagnosis or 
procedure code in addition to live birth code b 

871 (87.4) 67 (84.8) 730 (87.2) 74 (92.5) 

Abortion 270 (31.0) 5 (7.5) 264 (36.2) 1 (1.4) 

Miscarriage 412 (47.3) 49 (73.1) 331 (45.3) 32 (43.2) 

Fetal death 46 (5.3) 7 (10.4) 34 (4.7) 5 (6.8) 

Extra-uterine 88 (10.1) 1 (1.5) 55 (7.5) 32 (43.2) 

Abnormal conception product 55 (6.3) 5 (7.5) 46 (6.3) 4 (5.4) 

Indication of preterm delivery conflicts with 
observed length of pregnancy 

125 (12.6) 12 (15.2) 107 (12.8) 6 (7.5) 

a Estimated gestational age determined according to preterm diagnosis codes (if given) or set to 270 days for full term 
pregnancies 
b N = 53 conflicting end of pregnancy codes (in addition to the live birth code) were coded as both miscarriage and abortion. 
These are included in the abortion row. Other conflicting end of pregnancy codes that were coded at both fetal death and 
abortion or miscarriage (N = 7), abnormal conception product and abortion or miscarriage (N = 2), or extra-uterine and 
miscarriage or abortion (N = 2) are included in the fetal death, abnormal conception product, or extra-uterine rows. All other 
conflicting end of pregnancy codes only had one conflicting code listed.  

Considering the initial 90 days of the 270 day metric as the first trimester, among women with single live 
births who had the pregnancy first identified using a HCG result (with or without a diagnosis or 
procedure code), 79.8% (n = 52,103) had both the first laboratory result and the first diagnosis or 
procedure code recorded during the estimated first trimester (Table 29). Only 5.5% (n = 3583) had 
neither a diagnosis or procedure code nor an HCG result first recorded in the estimated first trimester.  

Table 29. Proportion of Single Live Births with Pregnancy Indicator Recorded within First Trimester 
Based on Estimated Gestational Period a among Pregnancies with Prenatal Positive HCG Laboratory 
Test, Overall and by Site 

Characteristic 
Total 

N = 65,266 (%) 

Data Partner Site 

Site 1 
N = 10,408 (%) 

Site 2 
N = 46,939 (%) 

Site 3 
N = 7,919 (%) 

Neither diagnosis/procedure nor lab result 
in 1st trimester 

3,583 (5.5) 770 (7.4) 2,095 (4.5) 718 (9.1) 

Lab only in 1st trimester 854 (1.3) 77 (0.7) 694 (1.5) 83 (1.0) 

Diagnosis/procedure only in 1st trimester 8,726 (13.4) 4,835 (46.5) 569 (1.2) 3,322 (41.9) 

Diagnosis/procedure and lab result in 1st 
trimester 

52,103 (79.8) 4,726 (45.4) 43,581 (92.8) 3,796 (47.9) 

a Estimated gestational age determined according to preterm diagnosis codes (if given) or set to 270 days for full term 
pregnancies 
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d. Summary of Cohort Identification Test Case 1 

In summary, this analysis estimated that using positive HCG laboratory results increased the number of 
women identified as pregnant (during the prenatal period) by 5.1% (n = 13,665) compared to using 
diagnosis and procedure codes alone; this varied across sites even within similarly-integrated healthcare 
delivery system sites (site 1 = 2.8%, site 2 = 6.7%). Among 268,219 women in the MSDD from these 
three sites who were pregnant between 2008 and 2013, 52.4% had at least one positive HCG result 
recorded, with availability of HCG results varying by site. For the 5.1% of the cohort whose only indicator 
of pregnancy in the dataset was the positive HCG result, 8.0% (N = 3081) had no end of pregnancy 
indicator. These women could have obtained abortions outside of their healthcare insurer, miscarried 
without seeking medical care, or delivered a live infant at home. Some women without end of 
pregnancy indicators could be women who sought abortions because, for 32.6% of the women whose 
pregnancies were known to end in abortion, the only indicator of pregnancy was a positive HCG 
laboratory test result. For this 5.1%, the incidence of miscarriage was also much higher than for the full 
cohort. For studying drug safety in pregnancy, identifying pregnancies based on HCG results might be 
particularly important if use of the drug of interest could be associated with miscarriage. In future work 
it will be important to study these subgroups of women better, in particular within the context of risks 
of drug exposures during pregnancy. 

For women with live births, this analysis suggests using positive HCG results would enable cohort 
identification more than two weeks (mean 15.7 days) earlier than using prenatal diagnosis or procedure 
codes alone. Women with abortion or miscarriage also had the positive HCG result recorded an average 
11.6 days before the prenatal diagnosis or procedure code. 

Nearly all (98.1%) positive HCG results fell within the 270 day gestational age metric, suggesting that 
continued use of the metric in observational database studies in determining gestational age from live 
births is appropriate.  
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2. Cohort Identification Test Case 2: enhanced identification of a cohort of adults with 
chronic kidney disease (CKD) through use of serum creatinine laboratory results data to 
estimate patients’ glomerular filtration rate 

a. Cohort Identification Test Case 2 cohort development 

This test case was focused on a cohort of individuals with one or more indicators of chronic kidney 
disease (CKD). Primary analyses were completed using a 2012 cohort; selected analyses were completed 
for 2010 and 2008 cohorts. In this test case, we examined whether estimating the glomerular filtration 
rate (eGFR)2 using outpatient serum creatinine results values applied to the CKD Epidemiology 
Collaboration (CKD-EPI) equation 96 (Figure 5) augmented identifying a cohort of adults with CKD aged > 
21 through < 89 years. The Workgroup also assessed the percent agreement between using serum 
creatinine laboratory test result values to estimate eGFR and coded diagnosis in this patient cohort. 

Figure 5. The 2009 CKD-EPI Creatinine Equation 96 

 

Similar to the previous cohort identification test case, because the primary purpose was to determine 
whether considering laboratory results enhanced cohort identification, no medical product exposure 
was required. Rather, the “exposure” was the availability of the creatinine result value (used to estimate 
GFR). Lists of codes used to identify patients with CKD and of codes used to exclude patients with kidney 
transplant or dialysis at baseline are provided in Appendix D. eGFR was defined as compatible with CKD 
Stage 3 or higher when the eGFR value was < 60 ml/min/1.73m2.  

This test case was expected to identify a mixed cohort of patients with prevalent and incident CKD 
because we only required 183 days minimum enrollment prior to the first indicator of CKD in 2012. This 
design was also expected to include a higher proportion of patients with Stages 4 and 5 CKD. Identifying 
and including patients with Stages 4 and 5 CKD is important for drug safety research because later stage 
CKD patients are more often candidates for medication dosage or frequency of medication dosing 
adjustment and are at higher risk of adverse outcomes if medications are not appropriately adjusted for 
level of renal dysfunction. 

                                                           
2 We quantified the n and % of patients with and without race data in this cohort. For patients without race data, 
we assumed non-African American when employing the CKD-EPI equation to estimate GFR.  
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The following research questions were addressed using the CKD cohort identified in this test case: 

1. What is the percent agreement between CKD identified using laboratory result values (at least 2 
eGFR values <60ml/min/1.73m2 with no intervening values > 60 measured at least 90 days apart) 
compared to at least 1 coded CKD diagnosis?  

2. What is the percent agreement between CKD identified using at least 2 eGFR values 
<60ml/min/1.73m2 (with no intervening values > 60) measured at least 90 days apart compared 
to identifying CKD using at least 2 coded diagnoses of CKD? 

3. What is the percent agreement between CKD identified using at least 1 eGFR value 
<60ml/min/1.73m2 compared to identifying CKD using at least 1 coded diagnosis of CKD.  

4. Describe the CKD cohort by age category < 65, > 65 - < 75, and > 75 – 89 years. 

5. Describe the CKD cohort by CKD Stage 3, Stage 4, Stage 5, and not staged. 

6. Describe the numbers and magnitude of increase in cohort size by calendar year. The primary 
cohort for questions 1 – 5 is from 2012. Cohorts from 2010 and 2008 were also identified and 
employed to answer this question.  

7. Each analysis was repeated stratified by Data Partner. 

These analyses answer questions about how many additional patients are gained in a CKD cohort by 
including laboratory results and assist in understanding whether differences in availability of laboratory 
result values results in variation in cohort characteristics. 

The diagnosis index date (T0) was defined as the first CKD diagnosis code in 2012. The laboratory result 
index date (T0L) was defined as the first eGFR (calculated from serum creatinine result value) < 60 
ml/min/1.73m2 when that serum creatinine result date preceded the date of the first CKD diagnosis or 
when there was no CKD diagnosis for a patient. The earliest of T0 or T0L was used for baseline medical 
and drug coverage determination. Medical and drug coverage was required for > 183 days prior to T0 or 
T0L in 2012. Similarly, for estimating whether cohort augmentation changed over time, medical and drug 
coverage was required for > 183 days prior to index date for 2008 and 2010. For the 2012 cohort, the 
first diagnosis or creatinine result value must have been in 2012 and the second diagnosis or creatinine 
result value was identified within the 365 days following T0 or T0L. A similar approach was used for the 
2010 and 2008 cohorts. Thus, a 365-day timeframe was used to identify all diagnosis or laboratory-
based indicators of CKD for each patient. Figure 6 shows the preliminary cohort (N = 612,573). After 
removing individuals who had an elevated creatinine but whose eGFR was > 60 ml/min/1.73m2 and 
those for whom no gender was available, the final CKD cohort included 610,252 individuals (Figure 6). 
Further details on the specifications of the test case, such as covariate data collected, are in Appendix D.  

No outcome was required for this test case. We applied these censoring rules: disenrollment from the 
health plan, dialysis, death, day 365 after cohort entry, and end of study timeframe. 
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Figure 6. Test Case for Cohort Identification Test Case 2, Enhanced Identification of a Cohort of Adults 
with Chronic Kidney Disease (CKD) through Use of Serum Creatinine Laboratory Results Values to 
Estimate Glomerular Filtration Rate 
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b. Cohort Identification Test Case 2 descriptive analysis (research questions 4 and 5) 

A detailed description of the 2012 CKD cohort is in Table 30. To describe the CKD cohort and align with 
the primary purpose of determining whether laboratory results enhanced cohort identification, if 
individuals had at least two coded CKD diagnoses within 365 days, they were preferentially assigned to 
that subgroup whether or not they also had eGFR estimate(s) available. Overall, 299,751 of the 610,252 
(49.1%) individuals in the cohort had at least two CKD diagnoses within 365 days. The proportion of the 
cohort with at least two CKD diagnoses at each site did not vary dramatically from the proportion of the 
cohort contributed by that site (Table 30). However, estimates within site varied from 37.5% of the 
cohort from site 1 (i.e., 17,593 of 46,886; site details in Appendix H) to 50.0% and 50.3% of the cohort 
from sites 3 and 2, respectively. 

If the CKD definition was relaxed to include patients with only one coded CKD diagnosis and one or more 
eGFR < 60 ml/min/1.73m2 within 365 days, an additional 50,540 (8.3%) individuals were identified. If the 
definition was expanded to include patients with at least two eGFR within 365 days of each other with 
no coded diagnosis, an additional 77,855 (12.8%) individuals were included. If broader definitions were 
applied such as requiring only one diagnosis or only one low eGFR, an additional 31,948 (5.2%) and 
150,158 (24.6%) of individuals were included, respectively. Requiring only one low eGFR within 365 days 
had the greatest variability in cohort inclusion across sites ranging from 21.8% at site 3 to 38.9% at site 
1. The proportions with at least one eGFR plus one diagnosis code (range: 7.6% to 9.7%), and with two 
or more low eGFR (range: 10.6% to 13.8%) did not vary dramatically by site. This lesser variability in site-
specific cohort proportions with available laboratory results differs from the site variations found in 
other test cases in this project. Additional information about the characteristics of the site-specific 
cohorts is in Appendix H.  

Table 30. Characteristics of Individuals in the 2012 Chronic Kidney Disease Overall Cohort 
Identification Test Case 2 Population 

Characteristics a CKD Identified by > 1 Diagnosis Code,  by > 1 eGFR values <60 ml/min/1.73m2 
(Calculated from Serum Creatinine Result Values), or by Both Methods 

> 2 CKD 
Diagnosis 
Codes b  

N = 299,751 
(49.1%) 

1 CKD 
Diagnosis 

Code and > 
1 low eGFR 
N = 50,540  

(8.3%) 

> 2 Low 
eGFRs 

 (no 
diagnosis) 
N = 77,855  

(12.8%) 

1 CKD 
Diagnosis 

only 
N = 31,948  

(5.2%)  

1 low eGFR 
only 

N = 150,158 
 (24.6 %) 

Total  
N = 610,252 

CKD stage from diagnosis 
code, N c 

299,751 50,540 N/A 31,948 N/A 382,239 

  Stage 3  198,545 
(66.2) 

21,274 
(42.1) 

 12,532 
(39.2) 

 232,351 
(60.8) 

  Stage 4 16,490 (5.5) 599 (1.2)  431 (1.3)  17,520 (4.6) 

  Stage 5 1,272 (0.4) 49 (0.1)  125 (0.4)  1,446 (0.4) 

  Stage unspecified/other 83,444 
(27.8) 

28,618 
(56.6) 

 18,860 
(59.0) 

 130,922 
(34.3) 

Estimated CKD stage from 
eGFR, N 

220,113 50,540 77,855 N/A 150,158 498,666 

  Stage 3  (30-59 
ml/min/1.73m2) 

189,776 
(86.2) 

47,434 
(93.9) 

76,546 
(98.3) 

 148,218 
(98.7) 

461,974 
(92.6) 

  Stage 4  (15-29 
ml/min/1.73m2) 

26,375 
(12.0) 

2,636 (5.2) 1,274 (1.6)  1,622 (1.1) 31,907 (6.4) 

  Stage 5 (< 15 
ml/min/1.73m2) 

3,962 (1.8) 470 (0.9) 35 (0.0)  318 (0.2) 4,785 (1.0) 
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Characteristics a CKD Identified by > 1 Diagnosis Code,  by > 1 eGFR values <60 ml/min/1.73m2 
(Calculated from Serum Creatinine Result Values), or by Both Methods 

> 2 CKD 
Diagnosis 
Codes b  

N = 299,751 
(49.1%) 

1 CKD 
Diagnosis 

Code and > 
1 low eGFR 
N = 50,540  

(8.3%) 

> 2 Low 
eGFRs 

 (no 
diagnosis) 
N = 77,855  

(12.8%) 

1 CKD 
Diagnosis 

only 
N = 31,948  

(5.2%)  

1 low eGFR 
only 

N = 150,158 
 (24.6 %) 

Total  
N = 610,252 

Estimated CKD stage from 
diagnosis and eGFR d 

299,751 54,540 77,855 31,948 150,158 610,252 

  Stage 3  (30-59 
ml/min/1.73m2) 

228,144 
(76.1) 

47,048 
(93.1) 

76,546 
(98.3) 

12,532 
(39.2) 

148,218 
(98.7) 

512,488 
(84.0) 

  Stage 4  (15-29 
ml/min/1.73m2) 

33,737 
(11.3) 

2,990 (5.9) 1,274 (1.6) 431 (1.3) 1,622 (1.1) 40,054 (6.6) 

  Stage 5 (< 15 
ml/min/1.73m2) 

4,692 (1.6) 502 (1.0) 35 (0.0) 125 (0.4) 318 (0.2) 5,672 (0.9) 

  Stage unspecified/other 33,178 
(11.1) 

0 (0.0) 0 (0.0) 18,860 
(59.0) 

0 (0.0) 52,038 (8.5) 

Age in years, mean (SD) 73.9 (9.6) 73.2 (10.2) 74.4 (8.6) 70.4 (11.4) 71.1 (10.4) 73.1 (9.9) 

Age categories, years 
  < 65 
  65-74 
  75-89 

 
40,309 
(13.4) 

104,372 
(34.8) 

155,070 
(51.7) 

 
8,383 
(16.6) 
17,341 
(34.2) 
24,816 
(49.1) 

 
9,085 (11.7) 

28,766 
(36.9) 
40,004 
(49.1) 

 
7,332 
(22.9) 
12,354 
(38.7) 
12,262 
(38.4) 

 
33,690 (22.4) 
56,795 (37.8) 
59,673 (39.7) 

 
98,799 
(16.2) 

219,628 
(36.0) 

291,825 
(47.8) 

Female sex 157,478 
(52.5) 

27,964 
(55.3) 

49,669 
(63.8) 

15,701 
(49.1) 

90,457 (60.2) 341,269 
(55.9) 

Site 

  1 17,593 (5.9) 3,982 (7.9) 5,985 (7.7) 1,105 (3.5) 18,221 (12.1) 46,886 (7.7) 

  2 93,350 
(31.1) 

17,976 
(35.6) 

19,574 
(25.1) 

5,180 
(16.2) 

49,484 (33.0) 185,564 
(30.4) 

  3 188,808 
(63.0) 

28,582 
(56.6) 

52,296 
(67.2) 

25,663 
(80.3) 

82,453 (54.9) 377,802 
(61.9) 

Any serum creatinine value 
available in 2012 

250,927 
(83.7) 

49,896 
(98.7)d 

77,855 
(100.0) 

16,234 
(50.8) 

150,158 
(100) 

545,069 
(89.3) 

Serum creatinine procedure 
code in 2012 

291,357 
(97.4) 

49,900 
(98.8) 

77,240 
(99.3) 

28,447 
(90.3) 

148,693 
(99.2) 

595,637 
(97.9) 

Race       

  White 222,415 
(74.2) 

39,291 
(77.7) 

64,334 
(82.6) 

23,122 
(72.4) 

118,837 
(79.1) 

467,999 
(76.7) 

  Black 40,875 
(13.6) 

5,130 
(10.2) 

5,258 (6.8) 4,514 
(14.1) 

10,376 (6.9) 66,153 
(10.8) 

  Other 19,330 (6.4) 2,986 (5.9) 3,773 (4.8) 1,446 (4.5) 8,270 (5.5) 35,805 (5.9) 

  Unknown 17,131 (5.7) 3,133 (6.2) 4,490 (5.8) 2,866 (9.0) 12,675 (8.4) 40,295 (6.6) 

No encounters in prior 183 
days 

14,049 (4.7) 2,983 (5.9) 3,790 (4.9) 1,458 (4.6) 9,209 (6.1) 
31,489 (5.2) 

Number of ambulatory 
medical visits during 
baseline, mean (SD) 

7.9 (8.5) 7.1 (7.9) 6.2 (6.4) 8.1 (8.7) 6.2 (7.1) 7.2 (7.9) 

Emergency department visit 
during baseline, N (%) yes 

34,224 
(11.4) 

6,087 
(12.0) 

7,063 (9.1) 
3,945 
(12.3) 

16,518 (11.0) 
67,837 
(11.1) 

Hospitalization during 
baseline, N (%) yes 

25,839 (8.6) 4,411 (8.7) 4,110 (5.3) 3,118 (9.8) 11,137 (7.4) 
48,615 (8.0) 
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Characteristics a CKD Identified by > 1 Diagnosis Code,  by > 1 eGFR values <60 ml/min/1.73m2 
(Calculated from Serum Creatinine Result Values), or by Both Methods 

> 2 CKD 
Diagnosis 
Codes b  

N = 299,751 
(49.1%) 

1 CKD 
Diagnosis 

Code and > 
1 low eGFR 
N = 50,540  

(8.3%) 

> 2 Low 
eGFRs 

 (no 
diagnosis) 
N = 77,855  

(12.8%) 

1 CKD 
Diagnosis 

only 
N = 31,948  

(5.2%)  

1 low eGFR 
only 

N = 150,158 
 (24.6 %) 

Total  
N = 610,252 

Institutional stay during 
baseline, N (%) yes 

14,715 (4.9) 2,348 (4.6) 2,728 (3.5) 2,026 (6.3) 5,527 (3.7) 27,344 (4.5) 

Comorbidity score, 69 mean 
(SD) e 

1.9 (2.5) 1.6 (2.5) 0.8 (1.9) 1.7 (2.4) 1.0 (2.1) 1.5 (2.4) 

Selected individual comorbidities 

  Congestive heart failure 75,417 
(25.2) 

10,071 
(19.9) 

10,650 
(13.7) 

6,665 
(20.9) 

18,819 (12.5) 
121,622 

(19.9) 

  HIV/AIDS 727 (0.2) 139 (0.3) 157 (0.2) 65 (0.2) 391 (0.3) 1,479 (0.2) 

  Hypertension 260,679 
(87.0) 

42,490 
(84.1) 

65,424 
(84.0) 

26,091 
(81.7) 

111,818 
(74.5) 

506,502 
(83.0) 

  Pulmonary disease, chronic 79,935 
(26.7) 

12,536 
(24.8) 

14,620 
(18.8) 

8,613 
(27.0) 

29,998 (20.0) 
145,702 

(23.9) 

  Peripheral vascular disease 85,222 
(28.4) 

11,508 
(22.8) 

11,420 
(14.7) 

7,661 
(24.0) 

21,745 (14.5) 
137,556 

(22.5) 

  Tumor, any 41,298 
(13.8) 

7,250 
(14.3) 

9,099 (11.7) 
4,335 
(13.6) 

18,587 (12.4) 
80,569 
(13.2) 

  Diabetes, any 148,949 
(49.7) 

19,863 
(39.3) 

28,954 
(37.2) 

14,537 
(45.5) 

43,212 (28.8) 
255,515 
(41.9)) 

  Myocardial infarction or 
stroke 

42,136 
(14.1) 

6,489 
(12.8) 

7,952 (10.2) 
4,453 
(13.9) 

14,322 (9.5) 
75,352 
(12.3) 

Previous CKD diagnosis in 
2011 

209,807 
(70.0) 

15,185 
(30.0) 

8,633 (11.1) 11,953 
(37.4) 

10,368 (6.9) 255,946 
(41.9) 

Mean follow-up time (SD) f 340.4 (73.7) 336.9 
(80.9) 

359.6 (27.4) 311.9 
(111.2) 

333.6 (86.1) 339.4 (76.7) 

Death within one year 17,847 (6.0) 3,874 (7.7) 878 (1.1) 2,260 (7.1) 5,968 (4.0) 30,827 (5.1) 
a Covariates assessed for the 183  days prior to cohort entry date (T0 or T0L) except as noted 
b Patients with > 2 CKD diagnosis codes within 365 days were assigned to this group whether or not they also had low 
eGFRs available. Many also had eGFRs available. 

c  Based on second coded diagnosis for those with 2 coded diagnoses 
d Serum creatinine to calculate low eGFR not available in 2012 for entire 100% because 365 day follow-up could extend 
into 2013 

e Determined over the 183 days prior to the cohort entry date. Diagnosis of renal failure is one of the coded conditions 
usually included in calculating this comorbidity score. However, because this work was intended to identify a cohort of 
individuals with CKD, coded diagnosis of renal failure was excluded from the comorbidity score calculated for this cohort.  

f Maximum follow-up time assessed was 365 days 

The mean (SD) age of patients in the overall CKD cohort was 73.1 (9.9) years. This varied from 70.4 years 
for patients with only one CKD diagnosis to 74.4 years for patients with two or more low eGFR and no 
coded CKD diagnosis. For all subgroups except those in the “1 CKD diagnosis only” subgroup (5.2% of the 
cohort), the proportion of patients identified with CKD was higher in the oldest age group (75 – 89 
years) than in the younger age categories (< 65 or 65 – 74 year; Table 30). Overall, 55.9% of the total 
cohort was female, ranging from 49.1% of those with only one CKD diagnosis to 63.8% of those with at 
least two low eGFR measurements.  

As shown by the total comorbidity score, individuals who entered the cohort through at least 2 low 
eGFR had less comorbidity (mean 0.8) than the cohort overall (mean 1.5), particularly relative to those 
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who had at least two coded CKD diagnoses (mean 1.9). Hypertension (83.0%) and diabetes (41.9%) were 
the most common comorbidities (Table 30). 

Across the three cohort subgroups that had any coded CKD diagnosis (N = 382,239), 60.8% were coded 
as Stage 3, 4.6% were coded as Stage 4, 0.4% were coded as Stage 5, and 34.3% had a coded diagnosis 
that was not staged. However, when CKD stage was estimated for the entire cohort using available eGFR 
or coded CKD diagnosis (N = 610,252), 84.0% were Stage 3, 6.6% were Stage 4, 0.9% were Stage 5, and 
only 8.5% remained not staged. When Stage was estimated for the entire cohort, site 3 had the lowest 
proportion of Stage 3 (81.0%), while site 1 had the highest proportion (91.9%). Conversely, site 3 had the 
highest proportion with no stage assignment (11.4%)(Appendix H).  

Although 70% (N = 209,870) of the cohort with two or more CKD diagnoses in 2012 also had a diagnosis 
of CKD in 2011 (Table 30), that sub-cohort accounted for 82% of the cohort with a prior CKD diagnosis 
(209,807 of 255,946). In contrast, only 11.1% (N = 8633) of the cohort identified by > 2 low eGFRs (no 
CKD coded diagnosis) in 2012 had a prior CKD diagnosis, accounting for only 3.4% of those with a prior 
diagnosis (8633 of 255,946). 

c. Cohort Identification Test Case 2 results and discussion 

Many database studies of patients with CKD require two indicators of CKD (e.g., qualifying laboratory 
result and/or coded diagnosis) for cohort inclusion. Considering only patients with at least 2 CKD 
diagnoses in our cohort identified 299,751 individuals. As shown in Table 31, augmenting this cohort 
with patients who had one coded diagnosis plus at least one low eGFR (N = 50,540) and with patients 
who had at least two low eGFR (N = 77,855) increased the cohort to 428,146 individuals, a 30.0% 
increase in cohort size over including only patients with at least two CKD diagnoses. The overwhelming 
majority of these additional individuals were Stage 3 (76,546 of 77,855). Site-specific cohort 
augmentation from estimated eGFR was 28.7% at site 2, 30.0% at site 3, and 36.2% at site 1 (Appendix 
H).  

Table 31. Identification of the 2012 Cohort of Patients with Chronic Kidney Disease using an Electronic 
Data Definition that Requires at Least Two Coded Diagnoses: Augmentation of the Cohort Identified 
Using Laboratory Test Results Criteria 

 Patients Identified 
Using Coded 

Diagnosis Definition 
Requiring > 2 

Diagnoses (with or 
without eGFR < 60 
ml/min/1.73m2) 

Additional Patients Identified Using Laboratory Test Results 
(No or 1 Diagnosis with eGFR < 60 ml/min/1.73m2) 

Total Patients in 
CKD Cohort 

 
Patients with 1 Coded 

Diagnosis and > 1 eGFR < 60 
ml/min/1.73m2 

Patients with  
> 2 eGFR < 60 

ml/min/1.73m2 (No Coded 
Diagnosis) 

N (%) in 
Subgroup 299,751 (70.0) a 

50,540 (11.8) 77,855 (18.2) 
428,146 

Subtotal 128,395 (30.0) 
a Comprised of 85,436 (20.0%) with > 2 coded diagnoses only and 214,315 (50.1%) with  > 2 coded diagnoses and > 1 eGFR < 
60 ml/min/1.73m2 
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As shown in Table 32, the 2008 and 2010 cohorts increased by greater proportions (38.6% and 31.5%, 
respectively) than the 2012 cohort (30.0%) when patients with one coded diagnosis plus at least one low 
eGFR and patients with at least two low eGFR were included. The contribution to the cohort proportion 
by including patients with one coded diagnosis and at least one eGFR was relatively consistent across 
the three cohort years both across and within each of the three sites. However, the contribution to the 
cohort proportion by including patients with two or more eGFR contributed 26.2% in 2008, declining to 
18.2% in 2012. The shift was dramatic at sites 1 and 2 where the additional percentages of individuals 
contributed to the cohort in 2008 and 2012 respectively were 34.5% and 21.7% (site 1) and 27.8% and 
15.0% (site 2). This could suggest not only increased prevalence of CKD, but also expanded recognition 
of low eGFR and improved assignment of CKD diagnosis over time. 

Table 32. Augmentation by Year of the Identified Chronic Kidney Disease Cohort Using Laboratory Test 
Results Criteria in addition to at Least Two Coded Diagnoses of Chronic Kidney Disease 

Cohort Year Proportion of 
Patients Identified 

Using Coded 
Diagnosis Definition 

Requiring > 2 
Diagnoses (with or 
without eGFR < 60 
ml/min/1.73m2) 

Proportions of Patients Identified Using 
Laboratory Test Results 

(No or 1 Diagnosis with eGFR < 60 
ml/min/1.73m2) 

Percent 
Total 

Increase in 
Cohort 

Size 

Total 
Patients in 
CKD Cohort 
 

Patients with 1 
Coded Diagnosis and 

> 1 eGFR < 60 
ml/min/1.73m2 

Patients with 
> 2 eGFR < 60 

ml/min/1.73m2 (No 
Coded Diagnosis) 

All Sites 

2012 70.0 11.8 18.2 30.0 428,146 

2010 68.6 11.0 20.5 31.5  341,263 

2008 61.4 12.4 26.2 38.6 251,409 

Site 1 

2012 63.8 14.4 21.7 36.1 27,560 

2010 60.9 13.2 25.9 39.1 22,084 

2008 50.7 14.8 34.5 48.3 17,638 

Site 2 

2012 71.3 13.7 15.0 28.7 130,900 

2010 65.5 12.7 21.7 34.4 112,733 

2008 57.7 14.5 27.8 42.3 100,152 

Site 3 

2012 70.0 10.6 19.4 30.0 269,686 

2010 71.1 9.7 19.2 28.9 206,446 

2008 65.5 10.5 23.9 34.4 133,619 

 

  



 
  
 

 
 

Statistical Methods - 78 -  Analytic Methods for Using Laboratory Test Results 

As shown in Table 33,  if the less stringent criterion of one or more coded CKD diagnosis is used, adding 
patients identified by eGFR calculated using creatinine values augments the 2012 CKD cohort proportion 
from the participating sites by 16.9%. Site-specific cohort augmentation was 14.4% at site 2, 17.7% at 
site 3, and 20.9% at site 1 (Appendix H).  

Table 33. Identification of the 2012 Cohort of Patients with Chronic Kidney Disease using an Electronic 
Data Definition that requires at Least One Coded Diagnosis: Augmentation of the Cohort Identified 
Using Laboratory Test Results Criteria 

 Patients Identified Using Coded Diagnosis Definition 
Requiring > 1 Diagnoses (with or without eGFR < 60 

ml/min/1.73m2) 

Lab Results 
> 2 eGFR < 60 

ml/min/1.73m2 

Total Patients in 
CKD Cohort 

 

N (%) in 
Subgroup 382,239 (83.1) a 77,855 (16.9) 460,094 

a Comprised of 31,948 (6.9%) with 1 coded diagnosis only, 50,540 (11.0%) with 1 coded diagnosis and > 1 eGFR < 60 
ml/min/1.73m2, 85,436 (18.6%) with > 2 coded diagnoses only, and 214,315 (46.6%) with >=2 coded diagnoses and > 1 eGFR 
< 60 ml/min/1.73m2 

 
As shown in Table 34, even when the less stringent criterion of one or more coded CKD diagnosis is used 
as the initial criterion, the 2008 and 2010 cohorts increased by greater proportions (24.3% and 19.0%, 
respectively) than the 2012 cohort (16.9%) when the criterion of including patients in the cohort who 
only had two or more low eGFR and no CKD diagnosis was added. The cohort additions were again 
greater at sites 1 and 2 where the additional proportions of individuals in the cohort in 2008 and 2012 
respectively were 33.3% and 20.9% (site 1) and 27.1% and 14.4% (site 2). 
 
Table 34. Augmentation by Year of the Identified Chronic Kidney Disease Cohort Using Laboratory 
Results Criteria in addition to at Least One Coded Diagnosis of Chronic Kidney Disease 

Cohort 
Year 

Patients Identified Using Coded Diagnosis 
Definition 

Requiring > 1 Diagnoses (with or without eGFR 
< 60 ml/min/1.73m2), % of Total 

Lab Results 
> 2 eGFR < 60 

ml/min/1.73m2, % of Total 

Total Patients in 
CKD Cohort 

 

All Sites 

2012 83.1 16.9 460,094 

2010 81.0 19.0 366,842 

2008 75.7 24.3 271,096 

Site 1 

2012 79.1 20.9 28,665 

2010 75.1 24.9 22,996 

2008 66.7 33.3 18,279 

Site 2 

2012 85.6 14.4 136,080 

2010 78.9 21.1 116,164 

2008 72.9 27.1 102,824 

Site 3 

2012 82.3 17.7 295,349 

2010 82.6 17.4 227,682 

2008 78.7 21.3 149,993 
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In Tables 32 through 34, the cohort includes adults with the first indicator of CKD in calendar year 2012, 
2010, or 2008. Additional diagnoses or low eGFR results were captured only up to 365 days after that 
first indicator. 

Percent agreement between pairs of CKD indicators 

Percent agreements between CKD indicators in the 2012 cohort are shown in Table 35. The first percent 
agreement shown is between CKD identified from at least 1 coded diagnosis (N = 383,239) compared to 
identifying CKD using at least 2 eGFR values <60ml/min/1.73m2 measured at least 90 days apart (N = 
246,135). Overall, there was agreement between these diagnosis and laboratory result indicators for 
52.2% of the 610,252 patients, including 27.6% that had both indicators and 24.6% that had neither 
indicator. Site variation was evident, ranging from 47.2% agreement at site 3 to 63.1% agreement at site 
1.  

Table 35. Agreement between Different Definitions of Chronic Kidney Disease in a Cohort of Adults 
with at least one Chronic Kidney Disease Diagnosis or at least one eGFR < 60 ml/min/1.73m2 in 2012 

Percent Agreement between Chronic Kidney Disease Diagnosis and eGFR 
Indicators 

Total Site 
1 

Site 2 Site 3 

Total in 2012 cohort, N 
610,252 46,8

86 
185,564 377,802 

 

> 1 CKD diagnosis (N = 383,239) and > 2 eGFR < 60 (N = 246,135) % 
agreement 

52.2 63.1 59.5 47.2 

% that agree because both indicators are present 27.6 24.2 32.9 25.4 

% that agree because neither indicator is present 24.6 38.9 26.7 21.8 

 

> 2 CKD diagnosis (N = 299,751) and > 2 eGFR < 60 (N = 246,135) % 
agreement 

58.0 67.0 63.5 54.3 

% that agree because both indicators are present 23.8 20.8 28.6 21.7 

% that agree because neither indicator is present 34.3 46.3 34.9 32.5 

 

> 1 CKD diagnosis (N = 383,239) and > 1 eGFR < 60 (N = 498,666) % 
agreement 

44.4 41.5 53.3 40.3 

% that agree because both indicators are present 44.4 41.5 53.3 40.3 

% that agree because neither indicator is present a 0 0 0 0 
a  Cohort selection required at least one CKD diagnosis or one eGFR < 60 ml/min/1.73m2 

The percent agreement between CKD identified using at least 2 coded diagnoses (N = 299,751) 
compared to using at least 2 eGFR values <60ml/min/1.73m2 measured at least 90 days apart is also 
shown in Table 35. Among the CKD definitions compared in Table 35, these two indicators had the 
highest percent agreement at 58.0% (23.8% meeting both indicators and 34.3% meeting neither 
indicator). Site variation was evident, with the percent agreement ranging from a low of 54.3% at site 3 
to a high of 67.0% at site 1.  

Finally, the percent agreement between CKD identified from at least 1 coded diagnosis compared to at 
least 1 eGFR value <60ml/min/1.73m2 (N = 498,666) is shown in Table 35. Across sites, these two 
indicators had the lowest percent agreement with 44.4% having both indicators. Because having at least 
one CKD diagnosis or at least one eGFR < 60 ml/min/1.73m2 was required for cohort inclusion, 0% had 
neither indicator. Percent agreement varied from 40.3% at site 3 to 53.3% at site 2.  
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d. Summary of Cohort Identification Test Case 2 

The number of adults identified for inclusion in a CKD cohort was substantially augmented by estimating 
GFR using available serum creatinine results in addition to coded diagnosis data. This finding was 
relatively consistent across sites and years. It was also true regardless of whether more or less stringent 
CKD indicators were applied for cohort inclusion, with the proportion of the 2012 CKD cohort identified 
using laboratory results varying from 16.9% to 30.0%. Similar patterns were observed in the 2008 and 
2010 CKD cohorts, but these earlier cohorts increased by even greater proportions when individuals 
identified as having CKD using eGFR data were considered (38.6% and 31.5%, respectively). That a lower 
proportion of individuals were identified only from eGFR data in the most recent cohort is potentially 
consistent with improved assignment of CKD coded diagnosis over time. 

Patients identified only through two or more eGFR results had less comorbidity than those identified 
through two or more CKD coded diagnoses. Stage 3 CKD was by far the most common CKD stage, 
whether determined from a CKD diagnosis code or from estimated eGFR.  

Overall, 55.9% of the total cohort was female; however 63.8% of individuals identified with at least two 
low eGFR measurements but no diagnosis was female. This raises questions about why more women 
were identified from eGFR alone. For example, do more women have creatinine values in the “normal” 
range despite low eGFR, making clinicians less likely to consider CKD? This would be consistent with 
published evidence that women are underdiagnoses with CKD relative to men, particularly in practices 
where laboratory results are reported as serum creatinine without eGFR.97 Alternatively, do women 
have more healthcare visits than men and this finding is aligned with women having more opportunities 
to have laboratory monitoring conducted? Potential clinical and safety outcomes, policy, and research 
implications of this observation will be important to explore in future work.  

The most stringent CKD definitions had the highest percent agreement. The CKD indicator set with the 
higher proportion having both indicators present was the least stringent, but the least restrictive CKD 
definition also had the lowest percent agreement. This finding is important for future CKD cohort 
construction because it implies that requiring more stringent criteria improves specificity. The 
requirement for this cohort that both indicators must have been present within the 365 day period likely 
resulted in percent agreements lower than would have been found had a longer time horizon been 
used. We recommend this be assessed in a future project.  

Strengths of this test case include the cohort size, examining data from three disparate healthcare 
delivery systems, and applying several different indicator sets to identify the CKD cohorts. A limitation of 
this test case was not considering urine protein laboratory test results in defining patients with CKD. The 
MSDD does not include urine protein results so these laboratory test results were not available for use.  

3. Summary of the performance of laboratory test results in augmenting cohort 
identification 

These analyses estimated whether additional individuals were included in two distinct cohort types 
when relevant laboratory results were considered in addition to coded diagnoses and procedures. The 
cohorts were a cohort of pregnant women and a cohort of patients with CKD. The laboratory tests were 
HCG results and serum creatinine results (used to determine eGFR using the CKD-EPI equation).  

In both test cases, the cohort size was augmented through inclusion of the laboratory results. In the 
pregnant cohort, the number of women identified as pregnant during the prenatal period solely due to 
positive HCG results was 5.1%. However, the proportion of pregnancies identified by only an HCG result 
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varied dramatically across pregnancy outcomes, from 0% of live births to 32.6% of pregnancies that 
ended in abortion. Fully, 52.4% of the cohort had at least one HCG result. Using positive HCG results 
enabled cohort inclusion 11.6 to 15.7 days earlier than using only prenatal diagnosis or procedure codes. 
The vast majority of positive HCG results fell within the 270 day gestational age metric, suggesting 
that continued use of this metric in database studies in determining gestational age from live birth 
outcomes is appropriate. In future work it will be important to study the subgroup of women who 
only had a laboratory-based indicator of pregnancy in the observational database, in particular within 
the context of implications related to risks of drug exposures during pregnancy.  

The size of the cohort of adults with CKD was substantially augmented by estimating GFR using 
creatinine laboratory results in addition to coded diagnosis. The most stringent CKD definitions had the 
highest percent agreement. Our cohort was only followed for 365 days -- it is likely that these percent 
agreements are lower than would have been found had a longer time horizon been used. We 
recommend that serum creatinine results available in the MSDD be included to supplement cohort 
identification criteria when constructing a CKD cohort for medical product safety surveillance 
activities.  

F. OUTCOME DETECTION TEST CASES 

The purpose of the Outcomes Detection Test Cases was to examine methods for using laboratory results 
to improve claims-based definitions of health outcomes, including determining the availability and 
nature of missingness of laboratory results and whether and how strategies might need to differ by type 
of laboratory result. In addition, in these test cases, the Workgroup determined whether additional 
individuals with a health outcome of interest were identified when available laboratory results were 
considered as criteria for the outcome definition in addition to coded diagnoses, procedures, and 
medications. The characteristics of individuals identified using outcomes criteria that did and did not 
include laboratory results values are described, the proportions of the cohorts with laboratory results 
outcomes data available are provided, and cohort-specific research questions are examined. 

1. Outcomes Detection Test Case 1: Type 2 diabetes mellitus (T2DM) and blood glucose or 
glycosylated hemoglobin laboratory test results values outcomes among adults initiating 
a Second Generation Antipsychotic Agent 

a. Outcomes Detection Test Case 1 cohort development 

As discussed in Baseline Confounder Test Case 1, SGA are prescribed to aid in treatment of mental 
health disorders and carry metabolic risks such as development of T2DM.64, 65 The intent of Outcomes 
Detection Test Case 1 was to determine whether including GLU results (fasting glucose, random glucose, 
or HbA1c) obtained within 365 days after initiation of a SGA (“follow-up GLU”) increased the number of 
individuals preliminarily identified as developing T2DM. 

Research questions addressed include: 

1. Does inclusion of follow-up GLU result value(s) after SGA initiation identify additional individuals 
with preliminary indicators of T2DM?  

a. How many additional outcomes are identified? 
b. How many cases of T2DM are identified earlier also using follow-up GLU results versus only 

diagnoses codes and antidiabetes medication dispensings? 
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2. Regarding the timing after SGA initiation until the observed follow-up GLU value: 

a. What is the distribution of time from the cohort entry date to the observed GLU result 
values? 

b. Does the time from the cohort entry date to available GLU result value vary by SGA? 

3. When is the appropriate time to censor patients from the cohort if no follow-up GLU result value 
is observed? 

4. What are the considerations around imputing GLU outcomes?  

The workgroup also addressed the following clinical question: Does risk of developing T2DM within 365 
days after SGA initiation differ by specific SGA?  

Exposures included SGA newly-started between July 1, 2008 and October 31, 2012 in adults > 21 years 
of age who had a minimum of 183 days enrollment in the health plan with medical and drug coverage 
prior to the first dispensing of an SGA and who did not have a history of diabetes (defined as no 
dispensing of an antidiabetic medication, no coded diabetes diagnosis, and no elevated GLU result value 
within the 183 days prior to SGA initiation). The cohort entry date (T0) was the date of the first SGA 
dispensing. The following SGA (single and combination products) were included to identify the 
preliminary cohort initiating an SGA: aripiprazole, asenapine, iloperidone, lurasidone, olanzapine, 
paliperidone, quetiapine, risperidone, and ziprasidone. Because use of several SGAs was very low, the 
final cohort included only individuals exposed to aripiprazole, olanzapine, quetiapine, or risperidone. We 
excluded pregnant women and women with polycystic ovarian syndrome. Details of cohort 
development are shown in Figure 7. Individuals in the cohort were censored at the first of any of the 
following: death, discontinuation of medical or drug coverage, diabetes outcome, or end of study 
period. Covariates considered for this test case are shown in Appendix D.  

Diabetes outcome was defined as the presence of any single inpatient or outpatient diabetes diagnosis 
code (ICD-9 CM 250.x), antidiabetic medication dispensing, or GLU result value compatible with diabetes 
(fasting glucose > 126mg/dl), random glucose > 200mg/dl, or HbA1c > 6.5%) within 365 days after T0. 
Any of these diabetes indicators were considered a “preliminary indication of diabetes.” This set of 
diabetes indicators provided a sensitive (less specific) definition of diabetes. The workgroup considered 
these outcomes preliminary rather than confirmatory indicators of diabetes, and considered that, for 
the purposes of this test case, a preliminary indication of diabetes was applicable.  
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Figure 7. Test Case for Outcomes Detection Test Case 1, Diabetes Outcome among Adults after 
Initiation of a Second Generation Antipsychotic Agent with Missing Blood Glucose or Glycosylated 
Hemoglobin Laboratory Test Results a 
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b. Outcome Detection Test Case 1 descriptive analysis 

Descriptions of the cohort by SGA initiated and by site are in Tables 36 and 37.The most common SGA 
started was quetiapine (48%), followed by risperidone (24%) and aripiprazole (18%), with olanzapine 
being used least frequently (11%) of these SGAs. SGA use varied by site. For example, site 2 contributed 
37.5% of the cohort, but 41.8% of quetiapine users, while site 3 contributed 57.9% of the cohort and 
62.8% of risperidone users. The cohort averaged 60.3 years of age; 62.3% were female.  

During the year following SGA initiation, 6.1% of the cohort developed a preliminary indication of 
diabetes, varying from 5.2% of individuals’ dispensed aripiprazole to 6.5% of individuals’ dispensed 
olanzapine or risperidone. Preliminary indicators of diabetes varied across sites (Table 37) from 3.7% 
and 3.8% at sites 1 and 2 respectively, to 7.8% at site 3. 

Table 36. Characteristics of Individuals in the Outcomes Detection Test Case 1 Population, Initiation of 
a Second Generation Antipsychotic and Type 2 Diabetes Mellitus across Three Sites, by Specific Second 
Generation Antipsychotic Agent 

Variable Second Generation Antipsychotic Agent 

Aripiprazole  
(N = 14,333) 

Olanzapine 
(N = 8,864) 

Quetiapine 
(N = 39,353) 

Risperidone 
(N = 19,235) 

Overall 
(N = 81,785) 

Diabetes outcome, N (%) Yes a 744 (5.2) 574 (6.5) 2,411 (6.1) 1,259 (6.5) 4,988 (6.1) 

Any Baseline GLU, N (%) Yes 4,789 (33.4) 3,770 (42.5) 16,813 (42.7) 7,745 (40.3) 33,117 (40.5) 
   Baseline HbA1c, N (%) Yes 681 (4.8) 437 (4.9) 1,927 (4.9) 946 (4.9) 3,991 (4.9) 

   Baseline Fasting Glucose, N (%) Yes 1,436 (10.0) 825 (9.3) 3,724 (9.5) 1,526 (7.9) 7,511 (9.2) 

   Baseline Random Glucose, N (%) Yes 3,615 (25.2) 3,319 (37.4) 14,452 (36.7) 6,724 (35.0) 28,110 (34.4) 
Any follow-up GLU, N (%) Yes 6,415 (44.8) 4,030 (45.5) 18,711 (47.5) 8,802 (45.8) 37,958 (46.4) 

   Any follow-up HbA1c, N (%) Yes 1,361 (9.5) 741 (8.4) 3,290 (8.4) 1,643 (8.5) 7,035 (8.6) 
   Any follow-up fasting glucose, N (%) 
Yes 2,547 (17.8) 1,382 (15.6) 5,808 (14.8) 2,820 (14.7) 12,557 (15.4) 

   Any follow-up random glucose, N (%) 
Yes 4,561 (31.8) 3,192 (36.0) 15,149 (38.5) 6,988 (36.3) 29,890 (36.5) 

Gender, N (%) female 10,028 (70.0) 5,172 (58.3) 23,935 (60.8) 11,786 (61.3) 50,921 (62.3) 
Age at cohort entry, mean (SD) years 50.1 (15.7) 61.0 (20.3) 62.0 (20.5) 64.2 (21.0) 60.3 (20.4) 

Year of cohort entry, N (%) 

   2008 1,783 (12.4) 1,345 (15.2) 5,091 (12.9) 2,396 (12.5) 10,615 (13.0) 
   2009 3,826 (26.7) 2,046 (23.1) 8,941 (22.7) 4,350 (22.6) 19,163 (23.4) 

   2010 3,361 (23.4) 1,839 (20.7) 8,730 (22.2) 4,345 (22.6) 18,275 (22.3) 

   2011 2,774 (19.4) 1,846 (20.8) 8,750 (22.2) 4,309 (22.4) 17,679 (21.6) 
   2012 2,589 (18.1) 1,788 (20.2) 7,841 (19.9) 3,835 (19.9) 16,053 (19.6) 

Site, N (%) 

   1 448 (3.1) 220 (2.5) 1,525 (3.9) 1,571 (8.2) 3,764 (4.6) 
   2 5,208 (36.3) 3,405 (38.4) 16,449 (41.8) 5,575 (29.0) 30,637 (37.5) 

   3 8,677 (60.5) 5,239 (59.1) 21,379 (54.3) 12,089 (62.8) 47,384 (57.9) 
Hispanic, N (%) 715 (5.0) 511 (5.8) 2,320 (5.9) 1,132 (5.9) 4,678 (5.7) 

Race, N (%) 

   White 9,095 (63.5) 6,217 (70.1) 29,060 (73.8) 14,097 (73.3) 58,469 (71.5) 
   African American 684 (4.8) 653 (7.4) 2,867 (7.3) 1,909 (9.9) 6,113 (7.5) 

   Other 454 (3.2) 459 (5.2) 1,355 (3.4) 754 (3.9) 3,022 (3.7) 

   Unknown 4,100 (28.6) 1,535 (17.3) 6,071 (15.4) 2,475 (12.9) 14,181 (17.3) 
GLU CPT code during baseline, N (%) yes 
b 4,270 (29.8) 4,418 (49.8) 16,986 (43.2) 8,164 (42.4) 33,838 (41.4) 
GLU CPT code during follow-up, N (%) 
yes b 4,915 (34.3) 3,979 (44.9) 17,429 (44.3) 8,151 (42.4) 34,474 (42.2) 

Number of unique medication classes 
dispensed during baseline, mean (SD) 10.8 (4.8) 9.7 (5.2) 10.1 (4.9) 9.5 (4.8) 10.0 (4.9) 
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Variable Second Generation Antipsychotic Agent 

Aripiprazole  
(N = 14,333) 

Olanzapine 
(N = 8,864) 

Quetiapine 
(N = 39,353) 

Risperidone 
(N = 19,235) 

Overall 
(N = 81,785) 

Number of ambulatory healthcare visits 
during baseline, mean (SD) 13.0 (15.3) 14.9 (18.3) 14.7 (19.2) 13.6 (16.3) 14.2 (17.8) 

Any emergency department visit during 
baseline, N (%) yes 3,728 (26.0) 4,043 (45.6) 15,745 (40.0) 7,525 (39.1) 31,041 (38.0) 

Any hospitalization during baseline, N 
(%) yes 1,835 (12.8) 3,169 (35.8) 10,864 (27.6) 5,558 (28.9) 21,426 (26.2) 

Any institutional stay during baseline, N 
(%) yes 2,003 (14.0) 2,479 (28.0) 9,063 (23.0) 5,026 (26.1) 18,571 (22.7) 

Comorbidity score, mean (SD) c, d 1.2 (1.5) 2.3 (2.6) 2.0 (2.4) 2.2 (2.4) 1.9 (2.3) 

Individual comorbidities, N (%) yes c, d 
   Alcohol abuse 894 (6.2) 741 (8.4) 3,566 (9.1) 1,312 (6.8) 6,513 (8.0) 

   Anemia 1,221 (8.5) 1,536 (17.3) 6,113 (15.5) 3,206 (16.7) 12,076 (14.8) 

   Cardiac arrhythmia 796 (5.6) 1,405 (15.9) 5,856 (14.9) 3,034 (15.8) 11,091 (13.6) 
   Coagulopathy 165 (1.2) 305 (3.4) 1,172 (3.0) 559 (2.9) 2,201 (2.7) 

   Heart failure, chronic 522 (3.6) 1,054 (11.9) 4,328 (11.0) 2,379 (12.4) 8,283 (10.1) 

   Dementia 441 (3.1) 1,604 (18.1) 7,777 (19.8) 5,047 (26.2) 14,869 (18.2) 
   Fluid/electrolyte disorder 933 (6.5) 1,776 (20.0) 6,305 (16.0) 3,199 (16.6) 12,213 (14.9) 

   HIV 68 (0.5) 36 (0.4) 171 (0.4) 49 (0.3) 324 (0.4) 
   Hypertension 4,333 (30.2) 4,147 (46.8) 18,615 (47.3) 9,714 (50.5) 36,809 (45.0) 

   Hemiplegia 123 (0.9) 154 (1.7) 718 (1.8) 321 (1.7) 1,316 (1.6) 

   Liver disease 326 (2.3) 258 (2.9) 1,090 (2.8) 430 (2.2) 2,104 (2.6) 
   Metastatic cancer 77 (0.5) 291 (3.3) 614 (1.6) 224 (1.2) 1,206 (1.5) 

   Psychosis 9,918 (69.2) 5,227 (59.0) 19,447 (49.4) 11,199 (58.2) 45,791 (56.0) 

   Pulmonary disease 2,142 (14.9) 1,845 (20.8) 7,343 (18.7) 3,800 (19.8) 15,130 (18.5) 
   Pulmonary circulation disorder 90 (0.6) 171 (1.9) 753 (1.9) 408 (2.1) 1,422 (1.7) 

   PVD 537 (3.7) 910 (10.3) 3,893 (9.9) 2,210 (11.5) 7,550 (9.2) 

   Renal 444 (3.1) 832 (9.4) 3,820 (9.7) 2,271 (11.8) 7,367 (9.0) 
   Tumor 550 (3.8) 821 (9.3) 2,799 (7.1) 1,348 (7.0) 5,518 (6.7) 

   Weight loss 132 (0.9) 452 (5.1) 1,291 (3.3) 588 (3.1) 2,463 (3.0) 
Individual comorbidities specific to test case c 

   Myocardial infarction, acute 273 (1.9) 412 (4.6) 1,942 (4.9) 988 (5.1) 3,615 (4.4) 

   Ischemic Stroke 407 (2.8) 672 (7.6) 3,006 (7.6) 1,679 (8.7) 5,764 (7.0) 
   Intracranial Hemorrhage 49 (0.3) 128 (1.4) 596 (1.5) 234 (1.2) 1,007 (1.2) 

   Osteoarthritis 1,744 (12.2) 1,582 (17.8) 7,230 (18.4) 3,602 (18.7) 14,158 (17.3) 

   Depression 9,952 (69.4) 4,589 (51.8) 20,003 (50.8) 9,313 (48.4) 43,857 (53.6) 
a Within 365 days after the cohort entry date 
b CPT codes 80047, 80048, 80050, 80053, 80069, 82947, 83036, 83037 
c Determined over the 183 days prior to the cohort entry date 
d Gagne et al 69 
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Table 37. Characteristics of Individuals in the Outcomes Detection Test Case 1 Population, Initiation of 
a Second Generation Antipsychotic and Type 2 Diabetes Mellitus, by Site 

Variable Data Partner Site 

Site 1 
(N = 3,764) 

Site 2 
(N = 30,637) 

Site 3 
(N = 47,384) 

All Sites 
(N = 81,785) 

Diabetes outcome, N (%) Yes a 141 (3.7) 1,164 (3.8) 3,683 (7.8) 4,988 (6.1) 

Any Baseline GLU, N (%) Yes 2,154 (57.2) 17,973 (58.7) 12,990 (27.4) 33,117 (40.5) 
   Baseline HbA1c, N (%) Yes 105 (2.8) 2,170 (7.1) 1,716 (3.6) 3,991 (4.9) 

   Baseline Fasting Glucose, N (%) Yes 622 (16.5) 6,738 (22.0) 151 (0.3) 7,511 (9.2) 

   Baseline Random Glucose, N (%) Yes 1,790 (47.6) 13,575 (44.3) 12,745 (26.9) 28,110 (34.4) 
Any follow-up GLU, N (%) Yes 2,567 (68.2) 20,268 (66.2) 15,123 (31.9) 37,958 (46.4) 

   Any follow-up HbA1c, N (%) Yes 231 (6.1) 3,627 (11.8) 3,177 (6.7) 7,035 (8.6) 

   Any follow-up fasting glucose, N (%) Yes 1,196 (31.8) 10,991 (35.9) 370 (0.8) 12,557 (15.4) 
   Any follow-up random glucose, N (%) Yes 1,972 (52.4) 13,229 (43.2) 14,689 (31.0) 29,890 (36.5) 

Gender, N (%) female 2,402 (63.8) 19,103 (62.4) 29,416 (62.1) 50,921 (62.3) 

Age at cohort entry, mean (SD) years 55.4 (21.1) 54.9 (21.1) 64.2 (19.0) 60.3 (20.4) 
Year of cohort entry, N (%) 

   2008 467 (12.4) 4,290 (14.0) 5,858 (12.4) 10,615 (13.0) 
   2009 862 (22.9) 7,128 (23.3) 11,173 (23.6) 19,163 (23.4) 

   2010 852 (22.6) 6,851 (22.4) 10,572 (22.3) 18,275 (22.3) 

   2011 885 (23.5) 6,622 (21.6) 10,172 (21.5) 17,679 (21.6) 
   2012 698 (18.5) 5,746 (18.8) 9,609 (20.3) 16,053 (19.6) 

Hispanic, N (%) 300 (8.0) 3,542 (11.6) 836 (1.8) 4,678 (5.7) 

Race, N (%) 
   White 2,807 (74.6) 22,986 (75.0) 32,676 (69.0) 58,469 (71.5) 

   African American 139 (3.7) 2,605 (8.5) 3,369 (7.1) 6,113 (7.5) 

   Other 83 (2.2) 2,393 (7.8) 546 (1.2) 3,022 (3.7) 
   Unknown 735 (19.5) 2,653 (8.7) 10,793 (22.8) 14,181 (17.3) 

GLU CPT code during baseline, N (%) yes b 1,758 (46.7) 11,583 (37.8) 20,497 (43.3) 33,838 (41.4) 
GLU CPT code during follow-up, N (%) yes b 1,711 (45.5) 11,007 (35.9) 21,756 (45.9) 34,474 (42.2) 

Number of unique medication classes 
dispensed during baseline, mean (SD) 9.0 (4.7) 9.2 (4.7) 10.6 (5.0) 10.0 (4.9) 
Number of ambulatory healthcare visits during 
baseline, mean (SD) 6.6 (6.5) 11.1 (18.2) 16.8 (17.7) 14.2 (17.8) 
Any emergency department visit during 
baseline, N (%) yes 1,329 (35.3) 14,053 (45.9) 15,659 (33.0) 31,041 (38.0) 

Any hospitalization during baseline, N (%) yes 944 (25.1) 8,153 (26.6) 12,329 (26.0) 21,426 (26.2) 
Any institutional stay during baseline, N (%) yes 357 (9.5) 2,617 (8.5) 15,597 (32.9) 18,571 (22.7) 

Comorbidity score, mean (SD) c, d 1.9 (2.0) 1.6 (1.9) 2.1 (2.5) 1.9 (2.3) 

Individual comorbidities, N (%) yes c, d 
   Alcohol abuse 435 (11.6) 3,391 (11.1) 2,687 (5.7) 6,513 (8.0) 

   Anemia 312 (8.3) 3,023 (9.9) 8,741 (18.4) 12,076 (14.8) 
   Cardiac arrhythmia 384 (10.2) 3,004 (9.8) 7,703 (16.3) 11,091 (13.6) 

   Coagulopathy 95 (2.5) 627 (2.0) 1,479 (3.1) 2,201 (2.7) 

   Heart failure, chronic 251 (6.7) 1,802 (5.9) 6,230 (13.1) 8,283 (10.1) 
   Dementia 534 (14.2) 2,872 (9.4) 11,463 (24.2) 14,869 (18.2) 

   Fluid/electrolyte disorder 566 (15.0) 3,224 (10.5) 8,423 (17.8) 12,213 (14.9) 

   HIV 6 (0.2) 134 (0.4) 184 (0.4) 324 (0.4) 
   Hypertension 1,146 (30.4) 10,285 (33.6) 25,378 (53.6) 36,809 (45.0) 

   Hemiplegia 37 (1.0) 310 (1.0) 969 (2.0) 1,316 (1.6) 

   Liver disease 96 (2.6) 846 (2.8) 1,162 (2.5) 2,104 (2.6) 
   Metastatic cancer 28 (0.7) 493 (1.6) 685 (1.4) 1,206 (1.5) 

   Psychosis 2,769 (73.6) 19,857 (64.8) 23,165 (48.9) 45,791 (56.0) 
   Pulmonary disease 576 (15.3) 4,635 (15.1) 9,919 (20.9) 15,130 (18.5) 

   Pulmonary circulation disorder 97 (2.6) 307 (1.0) 1,018 (2.1) 1,422 (1.7) 
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Variable Data Partner Site 

Site 1 
(N = 3,764) 

Site 2 
(N = 30,637) 

Site 3 
(N = 47,384) 

All Sites 
(N = 81,785) 

   PVD 167 (4.4) 1,683 (5.5) 5,700 (12.0) 7,550 (9.2) 

   Renal 338 (9.0) 2,271 (7.4) 4,758 (10.0) 7,367 (9.0) 

   Tumor 178 (4.7) 1,634 (5.3) 3,706 (7.8) 5,518 (6.7) 
   Weight loss 112 (3.0) 703 (2.3) 1,648 (3.5) 2,463 (3.0) 

Individual comorbidities specific to test case c 

   Myocardial infarction, acute 130 (3.5) 1,208 (3.9) 2,277 (4.8) 3,615 (4.4) 
   Ischemic Stroke 135 (3.6) 875 (2.9) 4,754 (10.0) 5,764 (7.0) 

   Intracranial Hemorrhage 47 (1.2) 290 (0.9) 670 (1.4) 1,007 (1.2) 
   Osteoarthritis 483 (12.8) 3,913 (12.8) 9,762 (20.6) 14,158 (17.3) 

   Depression 2,264 (60.1) 17,482 (57.1) 24,111 (50.9) 43,857 (53.6) 
a Within 365 days after the cohort entry date 
b CPT codes 80047, 80048, 80050, 80053, 80069, 82947, 83036, 83037 
c Determined over the 183 days prior to the cohort entry date 
d Gagne et al 69 

Less than half (40.5%) of the cohort had any baseline GLU result available; 46.4% had any follow-up GLU 
result available. Availability of follow-up GLU results differed by site (Table 37), from 31.9% at site 3 to 
66.2% at site 2 to 68.2% at site 1. Random glucose accounted for 52.4% of the 68.2% with GLU available 
at site 1 and 43.2% of the 66.2% with GLU available at site 2, at site 3, 31.0% of the 31.9% with GLU 
available were random glucoses. Unique combinations of type(s) of GLU results are shown in Table 38 
for baseline and follow-up periods. Patterns of available GLU result types appear similar in the two 
periods, with random glucose most common and HbA1c least common.  

Table 38. Availability of HbA1c, Fasting Glucose, and/or Random Glucose Laboratory Test Result 
Values during Baseline Period and within 365 Days after Initiation of Second Generation Antipsychotic 

Laboratory Test Result Type Laboratory Result Value Available 
during Baseline Period 

Laboratory Result Value Available during 
365 Day Follow-up Period 

Number of Individuals (%) Number of Individuals (%) 

None 48,668 (59.5) 43,827 (53.6) 
HbA1c only 376 (0.5) 541 (0.7) 

Fasting glucose only 3,950 (4.8) 6,141 (7.5) 

Random glucose only 22,852 (27.9) 21,091 (25.8) 
HbA1c and Fasting glucose 681 (0.8) 1,386 (1.7) 

HbA1c and random glucose 2,378 (2.9) 3,769 (4.6) 
Fasting and random glucose 2,324 (2.8) 3,691 (4.5) 

HbA1c and fasting and random glucose 556 (0.7) 1,339 (1.6) 

Any HbA1c, fasting glucose, or random glucose 33,117 (40.5) 37,958 (46.4) 
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The number and proportion of individuals with a diabetes outcome indicator identified from a coded 
diagnosis or medication dispensing versus a diabetes diagnosis, medication dispensing or GLU result are 
shown in Table 39.  

Table 39. Outcomes Identification Test Case 1, Numbers of Diabetes Outcomes Detected among 
Individuals Initiating a Second Generation Antipsychotic Agent using Diagnosis, Medication, and 
Laboratory Results Criteria 

Second Generation 
Antipsychotic Agent 

Diabetes Outcome Indicator 

Coded 
Diagnosis or 
Antidiabetic 
Medication 

Coded Diagnosis, 
Antidiabetic 

Medication or 
HbA1c > 6.5 

Coded Diagnosis, 
Antidiabetic 

Medication, or 
Fasting Glucose > 

126 

Coded Diagnosis, 
Antidiabetic 

Medication, or 
Random Glucose > 

200 

Coded Diagnosis, 
Antidiabetic Medication, 

HbA1c > 6.5, Fasting 
Glucose > 126, or Random 

Glucose > 200 

Aripiprazole (N = 14,333) 645 (4.5) 666 (4.7) 698 (4.9) 673 (4.7) 744 (5.2) 

Olanzapine (N = 8,864) 453 (5.1) 468 (5.3) 488 (5.5) 530 (6.0) 574 (6.5) 
Quetiapine (N = 39,353) 1,953 (5.0) 2,029 (5.2) 2,084 (5.3) 2,235 (5.7) 2,411 (6.1) 

Risperidone (N = 19,235) 1,107 (5.8) 1,144 (6.0) 1,161 (6.0) 1,181 (6.1) 1,259 (6.5) 

Total (N = 81,785) 4,158 (5.1) 4,307 (5.3) 4,431 (5.4) 4,619 (5.6) 4,988 (6.1) 

Moving from using only a coded diagnosis or medication dispensing to also using any GLU result values, 
the number of preliminary diabetes outcomes identified increased from 4,158 to 4,988, an absolute 
1.0% increase (17% relative increase). For each SGA, the largest increase was due to considering fasting 
or random glucose, not HbA1c. Inclusion of any GLU result yielded a similar absolute increase in diabetes 
outcomes identified for aripiprazole (0.7%) and risperidone (0.7%) and a greater absolute increase in 
diabetes outcomes identified for olanzapine (1.4%) and quetiapine (1.1%). 

Table 40 provides results for the impact of GLU results on the time to preliminary indicator of diabetes 
when GLU results were and were not considered. Median was shorter than mean time to diabetes 
indicator across all SGAs and all indicators, and did not differ substantially across diabetes indicators. 
Time to diabetes indicator was longer for aripiprazole (median 139.5 days when diagnosis, medication 
dispensing, and any GLU result value was considered) than for olanzapine (median 116 days), quetiapine 
(median 126 days), or risperidone (median 118 days). Overall, including GLU result values did not 
identify diabetes outcomes earlier, but did identify additional outcomes. 
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Table 40. Time to Preliminary Diabetes Indicator when GLU Results were and were not considered 
Diabetes Indicators and Second 

Generation Antipsychotic 
Number of Individuals Number of Days 

Mean (SD) Median a 
Diagnosis by ICD9 or Meds 

Aripiprazole 645 156.2 (104.1) 144.0 

Olanzapine 453 135.0 (102.7) 114.0 
Quetiapine 1953 143.7 (106.8) 126.0 

Risperidone 1,107 138.3 (105.0) 116.0 

Diagnosis by ICD9, Meds or HbA1c > 6.5 
Aripiprazole 666 154.5 (104.3) 139.0 

Olanzapine 468 134.1 (102.5) 114.0 

Quetiapine 2,029 143.7 (106.5) 126.0 
Risperidone 1,144 138.9 (105.0) 118.0 

Diagnosis by ICD9, Meds or fasting glucose > 126 

Aripiprazole 698 155.9 (105.7) 142.0 
Olanzapine 488 137.3 (103.8) 117.5 

Quetiapine 2,084 144.1 (107.1) 126.0 

Risperidone 1,161 138.5 (105.4) 116.0 

Diagnosis by ICD9, Meds or random glucose > 200 

Aripiprazole 673 155.2 (103.9) 144.0 

Olanzapine 530 135.5 (103.8) 114.0 
Quetiapine 2,235 145.1 (107.2) 127.0 

Risperidone 1,181 140.0 (105.0) 119.0 

Diagnosis by ICD9, Meds, HbA1c > 6.5, fasting glucose > 126 or random glucose > 200 
Aripiprazole 744 154.0 (105.6) 139.5 

Olanzapine 574 136.4 (104.2) 116.0 

Quetiapine 2,411 145.0 (107.2) 126.0 
Risperidone 1,259 139.7 (105.0) 118.0 

a Minimum and maximum days for all cells were 0 and 365, respectively 

c. Outcome Detection Test Case 1, predictors of missing blood glucose or glycosylated hemoglobin 
laboratory test results values 

Diabetes outcome rates with and without considering GLU laboratory result values 

Crude preliminary diabetes outcome rates per person year are shown in Table 41. The rate for each site 
was first calculated only using diagnosis codes or medication dispensings and second using diagnosis 
codes, medication dispensings, or GLU result values.  

Table 41. Crude Diabetes Outcome Rates per Person Year by Site Based on Diagnosis and Medication 
Use Indicator(s) and by Diagnosis, Medication, and GLU (Glucose or HbA1c) Result Values 

Site Crude Diabetes Outcome Rate Per Person-Year 

Determined Using ICD-9 Codes or 
Antidiabetic Medication 

Dispensing 

Determined Using ICD-9 Codes, Antidiabetic 
Medication Dispensing, and GLU Laboratory 

Result Values 

Site 1 (N = 3,764) 0.024 (0.019, 0.029) 0.038 (0.032, 0.045) 

Site 2 (N = 30,637) 0.018 (0.016, 0.019) 0.039 (0.037, 0.041) 

Site 3 (N = 47,384) 0.078 (0.076, 0.081) 0.082 (0.079, 0.084) 
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At all sites, the diabetes outcome rate increased when diagnosis codes, medication dispensings, and 
GLU results were considered versus only considering diagnosis codes and medication dispensings. The 
largest increase was at site 2 (from 0.018 to 0.039). The rate increased the least at site 3 (from 0.078 to 
0.082). Reasons the rate increases differ across sites potentially include coding practice variations (i.e., 
site 3 has a crude outcome rate substantially higher than either of the other sites based on coded 
diagnosis or medication dispensing) and that at site 3 only 31.9% of individuals had a follow-up GLU, 
whereas sites 1 and 2 had follow-up GLU for at least 66.2% of the individuals they contributed. 

To assist in understanding the contribution of missing GLU result values, at site 3 we computed outcome 
rates among individuals who did (N = 12,990) and did not (N = 34,394) have a baseline GLU procedure 
claim (CPT code) regardless of whether or not they had any follow-up GLU result available. The rate of 
diabetes outcome was lower in the subgroup that had a baseline GLU procedure claim than in the 
subgroup without a baseline GLU procedure claim (Table 42). One possible explanation for this finding 
could be that this is an “artifact of the exclusion criteria. “ The subgroup without baseline GLU 
procedure claims likely included some patients with undiagnosed pre-existing elevated GLU (or 
diabetes) that appeared (erroneously) to be incident diabetes when GLU laboratory testing was 
completed during follow-up. That is, patients who had baseline GLU laboratory testing result values 
compatible with diabetes were excluded from the cohort, while those without any baseline GLU 
laboratory testing (or baseline GLU result values) did not have the opportunity to be excluded from the 
cohort on the basis of GLU laboratory result values (i.e., differential exclusion at baseline). 

Table 42. Crude Diabetes Outcome Rates per Person Year at Site 3 Based on Diagnosis and Medication 
Use Indicator(s) or by Diagnosis, Medication, and GLU Follow-up Result Values Stratified by Presence 
of a GLU Laboratory Procedure Claim in the Baseline Period 

Site 3, Stratified by Presence or Absence of a Baseline 
Laboratory Procedure Claim 

Crude Diabetes Outcome Rate per Person-Year 

Determined Using ICD-9 
Codes or Antidiabetic 

Medication Dispensing 

Determined Using ICD-9 Codes, 
Antidiabetic Medication 

Dispensing, and GLU Laboratory 
Result Values 

Overall (N = 47,384) 0.078 (0.076, 0.081) 0.082 (0.079, 0.084) 

Baseline GLU laboratory procedure claim present  (N = 
12,990) 

0.073 (0.07, 0.076) 0.075 (0.072, 0.078) 

Baseline GLU laboratory procedure claim not present (N 
= 34,394) 

0.092 (0.086, 0.097) 0.098 (0.093, 0.104) 

Crude diabetes outcome rates are presented in Table 43 for each site, stratified by whether or not any 

follow-up GLU result value was available. At all sites, the outcome rate is much higher among individuals 

with follow-up GLU results available (regardless of whether the outcome is determined using GLU 

indicators), suggesting bias in selecting which individuals receive GLU evaluation (e.g., purposeful 

evaluation). This finding strongly supports the possibility that clinicians selectively choose patients for 

glucose-related monitoring who they believe are at higher risk of diabetes. 
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Table 43. Crude Diabetes Outcome Rates per Person Year by Site Based on Diagnosis and Medication 
Use Indicator(s) and by Diagnosis, Medication, and GLU Result Value(s) in the Follow-Up Period 

Site and Availability of GLU Laboratory Result Value 
During Follow-up Period 

Crude Diabetes Outcome Rate per Person-Year 

Determined Using ICD-9 
Codes or Antidiabetic 

Medication Dispensing 

Determined Using ICD-9 Codes, 
Antidiabetic Medication 

Dispensing, and GLU Laboratory 
Results Values 

Site 1 (N = 3,764) 

Available in follow-up period (N = 2,567) 0.033 (0.027, 0.041) 0.055 (0.046, 0.065) 

Not available in follow-up period (N = 1,197) 0.004 (0.002, 0.01) 0.004  (0.002, 0.01) 

Site 2  (N = 30,637) 

Available in follow-up period (N = 20,268) 0.025 (0.023, 0.028) 0.058 (0.055, 0.061) 

Not available in follow-up period (N = 10,369) 0.003 (0.002, 0.004) 0.003 (0.002, 0.004) 

Site 3 (N = 47,384) 

Available in follow-up period (N = 15,123) 0.119 (0.113, 0.124) 0.13 (0.124, 0.136) 

Not available in follow-up period (N = 32,261) 0.06 (0.057, 0.062) 0.06 0.057, 0.062) 

Baseline GLU laboratory result values as predictors of missing follow-up GLU laboratory result values 

The Workgroup explored whether the value of a baseline GLU result predicted missingness of a follow-
up GLU result. For individuals who had a baseline GLU result, we examined the distribution of baseline 
actual GLU result values, stratified by whether or not they had corresponding follow-up GLU result 
values. Below are mirrored histograms for baseline random or fasting glucose result values (Figure 8, 
Panel A) and baseline HbA1c result values (Figure 8, Panel B), overall and by site. In each figure the 
distribution of the baseline result value is displayed between individuals without a follow-up GLU result 
value (“no post lab” in red font on the top half of each figure) and individuals with a follow-up GLU 
result value (“with post lab” in green font on the bottom half of each figure). 
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Figure 8. Panel A: Distribution of Baseline Random or Fasting Glucose Result Values Stratified by 
Whether a Random or Fasting Glucose Result Value was also available in the Follow-up Period Overall 
and by Site 
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Panel B: Distribution of Baseline Glycosylated Hemoglobin Result Values Stratified by Whether a 
Glycosylated Hemoglobin Result Value was also available in the Follow-up Period Overall and by Site 
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For individuals with a baseline random or fasting glucose result value (Figure 8, Panel A), regardless of 
whether sites are considered together or individually, there is no obvious relationship between the 
value of the baseline glucose result and missingness of a follow-up glucose result (the shapes of the no 
post lab and with post lab histograms are similar). However, for individuals with a baseline HbA1c result 
value (Figure 8, Panel B), it appears a higher baseline HbA1c result value predicts having a follow-up 
HbA1c result value available (Figure 8, first graphic in Panel B, where the mode in the post lab subgroup 
is 5.9% and the mode in the no post lab subgroup is 5.6%). Site 1 has few HbA1c observations; that 
histogram should be interpreted cautiously. Site 2 histograms for post lab and no post lab subgroups are 
similar. Site 3 has a greater shift to the right in the post lab subgroup compared to the no post lab 
subgroup. 

Relationships between baseline characteristics and missing follow-up GLU result values 

Logistic regression was used to investigate relationships between baseline variables and the probability 
of missing follow-up GLU results. For these models, the outcome was no observed follow-up GLU result 
values (Table 44).  

In the fully-adjusted analysis of sites combined, not having a baseline GLU result available was strongly 
associated with not having a follow-up GLU result available (OR 0.29). This association was only at site 3 
(OR 0.19 [0.18, 0.20]; site 1: OR 0.93 [0.79, 1.09]; site 2: OR 1.07 [1.01, 1.13]), the site that had the 
lowest percentage of the cohort with GLU results available. A combination of system and patient 
characteristics are potential contributors to this finding: Patients are likely to consistently use the same 
commercial laboratory to have their blood drawn for GLU assessment; if they consistently use a 
laboratory vendor contracted to provide laboratory result values to the health insurer (site 3), then 
those GLU result values would be available for both the baseline and follow-up period (the converse 
would also be true).  

Olanzapine (OR 0.93), quetiapine (OR 0.87), or risperidone (OR 0.91) all had lower likelihood of missing 
follow-up GLU results than did the reference SGA (aripiprazole). Other associations are also shown in 
Table 44. 
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Table 44. Outcome Detection Test Case 1, Initiation of Second Generation Antipsychotics and Diabetes 
Outcome: Adjusted Logistic Regression Models assessing Associations with Missing Follow-up GLU 
Results, Overall and by Site 

Characteristic Associations with Missing Follow-up GLU: Adjusted Odds Ratios (95% CI) 
a 

Data Partner Site 

All Sites 
Combined 

Site 1 Site 2 Site 3 

SGA, Aripiprazole reference 

   Olanzapine 0.93 (0.87, 0.98) 0.72 (0.50, 1.04) 0.78 (0.71, 0.87) 1.02 (0.94, 1.11) 

   Quetiapine 0.87 (0.84, 0.91) 0.84 (0.66, 1.07) 0.95 (0.88, 1.02) 0.96 (0.90, 1.02) 
   Risperidone 0.91 (0.86, 0.95) 0.69 (0.55, 0.88) 0.78 (0.72, 0.85) 0.97 (0.91, 1.04) 

Sex, male vs. female 1.08 (1.04, 1.11) 1.08 (0.93, 1.26) 0.99 (0.94, 1.04) 1.09 (1.04, 1.14) 
Age (per 10 years) 0.99 (0.98, 1.00) 0.81 (0.77, 0.85) 0.84 (0.83, 0.86) 1.05 (1.03, 1.07) 

Any Baseline GLU 0.29 (0.28, 0.29) 0.93 (0.79, 1.09) 1.07 (1.01, 1.13) 0.19 (0.18, 0.20) 

Year of cohort entry, 2008 reference 
   2009 0.94 (0.89, 0.99) 0.96 (0.75, 1.23) 0.95 (0.88, 1.03) 0.85 (0.79, 0.92) 

   2010 0.91 (0.86, 0.96) 0.89 (0.69, 1.15) 0.96 (0.88, 1.04) 0.82 (0.76, 0.88) 

   2011 0.83 (0.79, 0.88) 0.77 (0.60, 1.00) 0.95 (0.87, 1.03) 0.68 (0.63, 0.74) 
   2012 0.87 (0.83, 0.92) 1.01 (0.78, 1.31) 0.99 (0.91, 1.08) 0.69 (0.64, 0.75) 

Hispanic, no/unknown reference 0.44 (0.41, 0.47) 0.91 (0.68, 1.22) 0.71 (0.65, 0.78) 0.36 (0.30, 0.42) 

Race, unknown reference 
   African American 0.52 (0.49, 0.56) 0.99 (0.66, 1.49) 0.62 (0.54, 0.70) 0.65 (0.59, 0.72) 

   White 0.57 (0.54, 0.59) 0.83 (0.68, 1.01) 0.67 (0.61, 0.74) 0.74 (0.69, 0.79) 
   Other 0.41 (0.37, 0.45) 0.77 (0.47, 1.27) 0.59 (0.52, 0.67) 0.75 (0.61, 0.92) 

Number of unique medication classes dispensed 
during baseline 0.97 (0.97, 0.97) 0.93 (0.91, 0.95 ) 

0.95 (0.94 , 0.95 
) 0.97 (0.96 , 0.97 ) 

Number of ambulatory healthcare visits during 
baseline 1.00 (1.00, 1.01) 0.99 (0.97, 1.00 ) 

1.00 (1.00 , 1.00 
) 1.00 (1.00 , 1.00 ) 

Emergency department visit during baseline (Y vs. 
N) 1.05 (1.01, 1.08) 1.07 (0.90, 1.27) 0.86 (0.80, 0.91) 1.20 (1.14, 1.26) 

Hospitalization during baseline (Y vs. N) 1.01 (0.97, 1.06) 0.93 (0.74, 1.16) 0.93 (0.86, 1.00) 1.16 (1.08, 1.24) 
Institutional stay during baseline (Y vs. N) 1.86 (1.78, 1.94) 0.89 (0.65, 1.22) 2.20 (1.98, 2.44) 1.29 (1.22, 1.36) 

Alcohol abuse (Y vs. N) 0.86 (0.82, 0.92) 1.00 (0.79, 1.27) 0.98 (0.90, 1.06) 0.98 (0.89, 1.07) 

Anemia (Y vs. N) 1.12 (1.07, 1.17) 1.06 (0.77, 1.46) 0.91 (0.83, 1.01) 1.10 (1.04, 1.17) 
Cardiac arrhythmia (Y vs. N) 0.97 (0.92, 1.02) 0.83 (0.61, 1.12) 0.93 (0.84, 1.03) 1.00 (0.94, 1.07) 

Coagulopathy (Y vs. N) 0.92 (0.83, 1.01) 0.79 (0.44, 1.39) 1.10 (0.91, 1.34) 0.88 (0.78, 1.00) 
Heart failure, chronic (Y vs. N) 1.13 (1.06, 1.20) 1.13 (0.77, 1.67) 1.21 (1.05, 1.38) 1.07 (1.00, 1.16) 

Dementia (Y vs. N) 1.45 (1.38, 1.51) 1.26 (0.97, 1.64) 1.08 (0.98, 1.19) 1.38 (1.30, 1.46) 

Fluid/electrolyte disorder (Y vs. N) 1.05 (1.00, 1.11) 0.80 (0.61, 1.04) 0.93 (0.84, 1.03) 1.08 (1.01, 1.16) 
HIV (Y vs. N) 0.53 (0.41, 0.68) 0.00 (0.00, ) 0.44 (0.27, 0.70) 0.52 (0.37, 0.73) 

Hypertension (Y vs. N) 1.01 (0.97, 1.05) 0.96 (0.78, 1.18) 0.85 (0.79, 0.91) 0.90 (0.86, 0.95) 

Hemiplegia (Y vs. N) 1.10 (0.97, 1.25) 0.96 (0.43, 2.14) 0.85 (0.65, 1.13) 1.30 (1.10, 1.54) 
Liver disease (Y vs. N) 0.78 (0.71, 0.86) 0.74 (0.43, 1.27) 0.81 (0.69, 0.95) 0.74 (0.65, 0.85) 

Metastatic cancer (Y vs. N) 1.71 (1.49, 1.97) 2.07 (0.79, 5.38) 2.76 (2.23, 3.43) 1.59 (1.30, 1.95) 

Psychosis (Y vs. N) 0.75 (0.72, 0.77) 0.74 (0.61, 0.90) 0.74 (0.70, 0.79) 0.86 (0.82, 0.90) 
Pulmonary disease (Y vs. N) 1.03 (0.99, 1.07) 1.12 (0.90, 1.40) 0.98 (0.91, 1.06) 0.97 (0.91, 1.02) 

Pulmonary circulation disorder (Y vs. N) 1.11 (0.99, 1.26) 1.01 (0.57, 1.78) 1.29 (0.98, 1.71) 1.20 (1.03, 1.40) 
PVD (Y vs. N) 1.07 (1.01, 1.13) 1.53 (1.02, 2.28) 1.05 (0.92, 1.20) 0.99 (0.92, 1.06) 

Renal (Y vs. N) 0.76 (0.72, 0.81) 1.33 (0.98, 1.81) 0.97 (0.87, 1.09) 0.80 (0.74, 0.86) 

Tumor (Y vs. N) 0.95 (0.89, 1.02) 0.81 (0.53, 1.24) 1.19 (1.05, 1.36) 0.87 (0.79, 0.94) 
Weight loss (Y vs. N) 1.01 (0.92, 1.12) 1.48 (0.90, 2.45) 0.99 (0.82, 1.20) 1.24 (1.08, 1.41) 

Myocardial infarction, acute (Y vs. N) 0.83 (0.76, 0.89) 1.29 (0.82, 2.01) 0.91 (0.78, 1.06) 0.89 (0.80, 0.99) 

Ischemic Stroke (Y vs. N) 1.09 (1.02, 1.17) 1.35 (0.85, 2.15) 0.91 (0.76, 1.09) 0.95 (0.88, 1.03) 
Intracranial Hemorrhage (Y vs. N) 0.85 (0.74, 0.99) 0.86 (0.41, 1.81) 0.67 (0.50, 0.90) 1.04 (0.86, 1.27) 
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Characteristic Associations with Missing Follow-up GLU: Adjusted Odds Ratios (95% CI) 
a 

Data Partner Site 
All Sites 

Combined 
Site 1 Site 2 Site 3 

Osteoarthritis (Y vs. N) 0.95 (0.91, 0.99) 1.11 (0.86, 1.43) 0.94 (0.86, 1.02) 0.92 (0.87, 0.97) 
Depression (Y vs. N) 0.94 (0.91, 0.98) 1.14 (0.96, 1.35) 1.03 (0.97, 1.09) 0.91 (0.86, 0.95) 
a Adjusted for all characteristics shown 

d. Outcomes Detection Test Case 1, associations between individual SGA or baseline GLU availability 
and outcome with differing diabetes outcome indicators 

We assessed the effect of the various outcome definitions on relationships between individual SGAs and 
the first preliminary indicator of diabetes for all sites combined and stratified by site using Cox 
proportional hazards models. Aripiprazole was the referent SGA for each comparison (Table 45). We also 
report HR for the availability of a baseline GLU result (Table 45).  

The HR estimates for the all sites combined models, regardless of how the outcome was defined, were 
greater for olanzapine, quetiapine, and risperidone than for aripiprazole, but all CI contained 1. We did 
not detect a difference in risk of diabetes within 365 days after SGA initiation by specific SGA. When 
comparing the two most extreme diabetes outcome indicator definitions (Models 1 and 5), the largest 
difference in HR was for olanzapine (HR 1.02 versus 1.07), but all CI overlap; it does not appear this 
difference is meaningful.  

The HR estimates for the all sites combined models for having any baseline GLU result available, 
regardless of how the outcome was defined, were all greater than 1, but the CI contained 1 in Models 1 
and 3. In Model 2 (diagnosis codes, medication dispensing, or elevated HbA1c), Model 4 (diagnosis 
codes, medication dispensing, or elevated random glucose), and Model 5 (diagnosis codes, medication 
dispensing, or elevated any GLU), having a baseline GLU result available was associated with an 
increased risk of diabetes after SGA initiation. It is beyond the scope of the current work to determine 
whether this finding is a function of selection bias in ordering and performing baseline glucose-related 
assessment preferentially in patients perceived to be at higher risk of diabetes after SGA initiation. The 
differences in HR between models 1 and 5 (the two most extreme outcome definitions) for an available 
baseline GLU result were not meaningful (HR 1.07 versus 1.12, with CI that overlapped).  
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Table 45. Outcome Detection Test Case 1, Initiation of Second Generation Antipsychotics and Diabetes 
Outcome: Associations between Second Generation Antipsychotic or Baseline GLU Result Availability 
and Diabetes Outcome with Differing Diabetes Outcome Indicators 

Second Generation 
Antipsychotic Agent 

Associations with Diabetes Outcomes: Adjusted Hazard Ratio (95% CI) 

Model 1: Diagnosis 
Code or Antidiabetic 

Medication 
Dispensing 

Model 2: 
Diagnosis Code, 

Antidiabetic 
Medication 

Dispensing, or 
HbA1c > 6.5 

Model 3: 
Diagnosis Code, 

Antidiabetic 
Medication 

Dispensing, or 
Fasting Glucose 

> 126 

Model 4: 
Diagnosis Code, 

Antidiabetic 
Medication 

Dispensing, or 
Random 

Glucose > 200 

Model 5: 
Diagnosis Code, 

Antidiabetic 
Medication 

Dispensing, or 
Any GLU 

(HbA1c > 6.5, 
Fasting Glucose 
> 126, Random 
Glucose > 200 

All Sites, aripiprazole reference 

Olanzapine 1.02 (0.90, 1.15) 1.02 (0.90, 1.15) 1.02 (0.90, 1.15) 1.08 (0.96, 1.22) 1.07 (0.96, 1.20) 

Quetiapine 1.03 (0.94, 1.13) 1.03 (0.94, 1.13) 1.01 (0.93, 1.11) 1.06 (0.96, 1.16) 
1.04 ( 0.95, 

1.13) 

Risperidone 1.03 (0.93, 1.15) 1.04 (0.94, 1.15) 1.03 (0.93, 1.13) 1.02 (0.92, 1.13) 1.01 (0.92, 1.11) 

 

Any baseline GLU result 
available 1.07 (1.00, 1.15) 1.09 (1.02, 1.16) 1.07 (1.00, 1.14) 1.13 (1.06, 1.20) 1.12 (1.06, 1.20) 

 

Site Specific, aripiprazole reference 

Site 1 

Olanzapine 0.54 (0.14, 2.04) 0.56 (0.15, 2.10) 0.89 (0.30, 2.63) 0.91 (0.31, 2.71) 1.20 (0.46, 3.13) 

Quetiapine 0.92 (0.44, 1.93) 1.18 (0.58, 2.43) 1.11 (0.55, 2.21) 1.34 (0.68, 2.65) 1.53 (0.80, 2.90) 

Risperidone 1.18 (0.57, 2.44) 1.25 (0.61, 2.55) 1.26 (0.64, 2.51) 1.34 (0.68, 2.66) 1.43 (0.75, 2.73) 

      

Any baseline GLU result 
available 1.13 (0.69, 1.84) 1.20 (0.76, 1.90) 1.22 (0.78, 1.91) 1.10 (0.72, 1.68) 1.18 (0.80, 1.75) 

      

Site 2 

Olanzapine 0.79 (0.55, 1.12) 0.84 (0.61, 1.17) 0.86 (0.65, 1.14) 1.08 (0.82, 1.42) 1.05 (0.83, 1.32) 

Quetiapine 0.90 (0.70, 1.15) 0.90 (0.71, 1.14) 0.86 (0.70, 1.05) 1.00 (0.81, 1.25) 0.92 (0.77, 1.10) 

Risperidone 0.88 (0.66, 1.19) 0.95 (0.72, 1.25) 0.88 (0.69, 1.12) 0.93 (0.72, 1.21) 0.90 (0.73, 1.11) 

      

Any baseline GLU result 
available 0.99 (0.80, 1.22) 0.99 (0.82, 1.21) 1.02 (0.85, 1.21) 0.96 (0.80, 1.14) 0.97 (0.84, 1.13) 

      

Site 3 

Olanzapine 1.06 (0.93, 1.21) 1.05 (0.92, 1.20) 1.06 (0.93, 1.21) 1.07 (0.94, 1.22) 1.06 (0.93, 1.21) 

Quetiapine 1.05 (0.95, 1.16) 1.05 (0.95, 1.16) 1.05 (0.95, 1.17) 1.05 (0.95, 1.17) 1.06 (0.95, 1.17) 

Risperidone 1.05 (0.93, 1.17) 1.04 (0.93, 1.17) 1.05 (0.94, 1.18) 1.04 (0.93, 1.16) 1.04 (0.93, 1.16) 

      

Any baseline GLU result 
available 1.08 (1.01, 1.17) 1.10 (1.02, 1.18) 1.09 (1.01, 1.17) 1.11 (1.04, 1.20) 1.13 (1.05, 1.21) 
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In the site-specific outcome models, comparing HR from different model definitions, the HR vary most 
widely at site 1, but CIs are wide and all contain 1. At sites 2 and 3, again all HR include 1. Within each 
outcome definition modeled, relatively large site differences are observed. For example, using the most 
liberal outcome definition (Model 5), the HR for quetiapine is 0.90 (0.73, 1.11) at site 2 and 1.06 (0.95, 
1.17) at site 3. While these CIs overlap, the HR differ, and the lower limit of the CI at site 3 is greater 
than the HR estimate at site 2. 

e. Summary of Outcomes Detection Test Case 1 

Overall, less than half of the cohort had any baseline or follow-up GLU result value available. Availability 
of follow-up GLU results differed by site, with the large national insurer site having 31.9% with follow-up 
GLU and the smaller and larger integrated healthcare delivery system sites having 66.2% to 68.2% with 
follow-up GLU. Including GLU results did not identify diabetes outcomes earlier, but GLU results did 
identify additional outcomes. Moving from using only a coded diabetes diagnosis or medication 
dispensing to also using any GLU result values, preliminary diabetes outcomes identified increased an 
absolute 1.0% (17% relative increase).  

At all sites the outcome rate was much higher among individuals with follow-up GLU results available, 
whether outcomes were determined using only coded diagnoses and medication dispensings or coded 
diagnoses, medication dispensings, and GLU laboratory results, suggesting bias in selecting individuals to 
receive glucose-related laboratory monitoring. This supports the possibility that clinicians selectively 
choose patients for glucose-related monitoring who they believe are at higher risk of diabetes.  

For individuals with a baseline random or fasting glucose result value, there is no obvious relationship 
between the value of the baseline glucose result and missingness of a follow-up glucose result. 
However, for individuals with a baseline HbA1c result value, a higher baseline HbA1c result value 
appears to be a predictor of having a follow-up HbA1c result available. 

Having a baseline GLU result available was strongly associated with having a follow-up GLU result 
available, but only at the large national insurer site. System and patient characteristics are potential 
contributors to this finding.  

Olanzapine, quetiapine, and risperidone all had lower likelihood of missing follow-up GLU result values 
than did aripiprazole. We did not detect any difference in risk of diabetes within 365 days after SGA 
initiation by specific SGA. 

2. Outcomes Detection Test Case 2: Upper gastrointestinal bleeding and hemoglobin (HGB) 
laboratory test results value outcomes among adults initiating a non-steroidal anti-
inflammatory drug (NSAID) 

a. Outcomes Detection Test Case 2 cohort development 

Non-steroidal anti-inflammatory drugs (NSAIDs) are used for acute pain and for symptomatic treatment 
of chronic inflammatory and degenerative joint diseases. Their use is associated with a three- to five-
fold increased risk of upper gastrointestinal (UGI) adverse events such as bleeding and perforated 
ulcer.98 The use of selective cyclooxygenase (COX-2)-2 inhibitor NSAIDs is associated with a lower risk of 
UGI complications than is use of non-selective NSAIDs.98 The intent of this outcomes test case was to 
determine whether including hemoglobin (HGB) result values obtained within 30 days after initiation of 
an NSAID increased the number of individuals identified with an UGI bleeding outcome. 
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Research questions addressed include: 

1. What numbers (%) of patients have HGB results available?  Specifically, within a cohort newly-
starting an NSAID stratified by data partner site, describe the numbers and proportions of 
patients with HGB result values available before, after, and both before and after exposure to an 
NSAID from outpatient, inpatient, and emergency department care locations. (Note: Emergency 
department setting laboratory test results data are only available from one data partner site). 

2. In the ambulatory, ambulatory to inpatient, inpatient, and emergency department to inpatient 
care locations, does use of HGB results identify additional cases of UGI bleeding beyond the use 
of diagnosis codes alone? Definitions include at least two HGB result values when one HGB is 
obtained after NSAID initiation and one is obtained either before NSAID exposure or prior to a 
bleeding outcome. UGI bleeding outcome is defined as a decrease of > 3 g/dL between the HGB 
result values. 

3. Independent of care location, does use of available HGB result values, either alone or in 
combination with outpatient diagnosis codes, identify additional cases of UGI bleeding beyond 
the use of inpatient diagnosis codes alone (i.e., the standard claims-based definition)? 

4. For questions #1 through #3, describe UGI bleeding occurrence between individuals exposed to 
COX-2 selective vs. non-selective NSAIDs. NOTE: Sites 1 and 2 may have too low COX-2 use to 
analyze using this approach. If so, only non-selective NSAIDs will be used in analyses. 

5. What is the confirmation rate of the diagnosis code (e.g., percentage of times change in HGB 
“confirms” the diagnosis)? 

The exposures of interest included any NSAID newly-started (defined as not prescribed within the 183 
days prior to the first NSAID dispensing in the date range) between January 1, 2008 and April 30, 2013 in 
individuals aged 18 years of age or older who had a minimum of 183 days enrollment in the health plan 
with medical and drug coverage prior to the first NSAID dispensing (bridging gaps up to 45 days). We 
selected individuals without a history of hematologic cancer, pregnancy, or diagnosed UGI bleeding 
during the 183 day baseline period (ICD-9 codes are in Appendix D). The cohort entry date (T0) was the 
date of the first NSAID dispensing. Non-selective NSAIDs included diclofenac (oral and injection), 
etodolac, fenoprofen, flurbiprofen, ibuprofen (oral and injection), indomethacin (oral and rectal), 
ketoprofen, ketorolac (oral, injection, and nasal), meclofenamate, mefenamic acid, meloxicam, 
nabumetone, naproxen, oxaprozin, piroxicam, sulindac, tolmetin, prescription aspirin, choline 
magnesium salicylate, and diflunisal. The selective COX-2 Inhibitor was celecoxib.  

The claims-based outcome definition was the presence of any single acute UGI bleeding or gastric ulcer 
diagnosis code (ICD-9 codes are in Appendix D) from an inpatient care location within 30 days after T0. 
The claims plus laboratory results value-based (enriched) definition was the presence of any single UGI 
bleeding or gastric ulcer diagnosis code from a non-inpatient location AND a decrease of > 3 g/dL 
between two HGB results (before and after T0). This hierarchy was applied: 

1. Identify patients with UGI bleeding or gastric ulcer outcome based on a coded inpatient 
diagnosis. 

2. Among those who do not meet criterion #1, identify patients with a UGI bleeding or gastric ulcer 
outcome based on a coded non-inpatient diagnosis AND a drop in HGB of > 3 g/dL.  

3. Among those who do not meet criteria #1 or #2, identify patients with a drop in HGB of > 3 g/dL 
(i.e., no coded bleeding diagnosis).  
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4. Among those who do not meet criteria #1, #2, or #3, identify patients with an UGI bleeding or 
gastric ulcer outcome based on a coded non-inpatient diagnosis who do not have a drop in HGB 
defined as either HGB results are available but the decrease is < 3 g/dL between two HGB results, 
or HGB results are not available. 

While the workgroup intended to describe UGI bleeding for a selective and a non-selective NSAID, it was 
anticipated that celecoxib use could be very low at some sites. Therefore, the frequency of NSAID use 
across the three sites was first examined to determine the feasibility of the planned description. If not 
feasible, the workgroup would then decide the non-selective NSAIDs to examine based on the frequency 
of NSAID use. 

Individuals in the cohort were censored at the first of death, discontinuation of medical or drug 
coverage, or end of study (October 31, 2013). For the bleeding outcomes descriptions, individuals were 
also censored when they were switched to an NSAID other than the NSAID dispensed on T0. Covariates 
for this test case are shown in Appendix D.  
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Figure 9. Test Case for Outcomes Detection Test Case 2, Gastrointestinal Bleeding among Adults after 
Initiation of a Non-steroidal Anti-inflammatory Drug (NSAID) and Hemoglobin Laboratory Test Results 
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b. Outcomes Detection Test Case 2 descriptive analysis of full cohort 

NSAID prescriptions in the full cohort 

Numbers of individuals dispensed each prescription NSAID among the 2,289,772 individuals from the 
three sites between January 1, 2008 and April 30, 2013 is shown in Table 46. Overall, the most common 
NSAID dispensed was ibuprofen (40.4%), followed by naproxen (15.5%), meloxicam (10.4%), diclofenac 
(8.0%), nabumetone (7.5%), and indomethacin (4.4%). Celecoxib accounted for 2.0% of new NSAID use, 
but 89.9% of the celecoxib prescriptions were from site 3 (40,871 of 45,449). Therefore, it was not 
appropriate to describe UGI bleeding occurrence for selective and non-selective NSAIDs for individual 
sites. The Workgroup decided to describe UGI bleeding occurrences for ibuprofen (n = 924,656) and 
indomethacin (n = 100,869). 

Table 46. New NSAID Exposures at Three Sites between January 1, 2008 and April 30, 2013, Overall 
and by Site 

Non-Steroidal Anti-
Inflammatory Drug 

Numbers of Individuals with New Use 

All Sites Site 1 Site 2 Site 3 

Aspirin 76,741 (3.4) 1,617 (1.7) 36,068 (3.2) 39,056 (3.6) 

Celecoxib 45,449 (2.0) 301 (0.3) 4,277 (0.4) 40,871 (3.8) 

Choline magnesium salicylate 1,318 (0.1) 4 (0.0) 1,013 (0.1) 301 (0.0) 

Diclofenac 182,588 (8.0) 16,930 (17.8) 38,785 (3.5) 126,873 (11.8) 

Diflunisal 2,484 (0.1) 47 (0.0) 114 (0.0) 2,323 (0.2) 

Etodolac 67,460 (2.9) 9,348 (9.8) 32,604 (2.9) 25,508 (2.4) 

Fenoprofen 485 (0.0) 1 (0.0) 5 (0.0) 479 (0.0) 

Flurbiprofen 5,505 (0.2) 1 (0.0) 846 (0.1) 4,658 (0.4) 

Ibuprofen 924,656 (40.4) 24,974 (26.2) 638,729 (57.0) 260,953 (24.3) 

Indomethacin 100,869 (4.4) 8400 (8.8) 45,165 (4.0) 47,304 (4.4) 

Ketoprofen 4,267 (0.2) 459 (0.5) 123 (0.0) 3,685 (0.3) 

Ketorolac 66,511 (2.9) 99 (0.1) 3,978 (0.4) 62,434 (5.8) 

Meclofenamate 863 (0.0) 4 (0.0) 665 (0.1) 194 (0.0) 

Mefenamic acid 1,185 (0.1) 0 (0.0) 369 (0.0) 816 (0.1) 

Meloxicam 238,728 (10.4) 12,702 (13.3) 30,235 (2.7) 195,791 (18.2) 

Nabumetone 171,591 (7.5) 5,959 (6.3) 136,451 (12.2) 29,181 (2.7) 

Naproxen 355,972 (15.5) 12,484 (13.1) 140,248 (12.5) 203,240 (18.9) 

Oxaprozin 6,414 (0.3) 5 (0.0) 43 (0.0) 6,366 (0.6) 

Piroxicam 9,998 (0.4) 3 (0.0) 680 (0.1) 9,315 (0.9) 

Salsalate 6,576 (0.3) 660 (0.7) 3,419 (0.3) 2,497 (0.2) 

Sulindac 12,845 (0.6) 1,039 (1.1) 4,760 (0.4) 7,046 (0.7) 

Tolmetin 184 (0.0) 29 (0.0) 12 (0.0) 143 (0.0 

> 2 NSAIDs started the same 
date 

7,083 (0.3) 116 (0.1) 2,472 (0.2) 4,495 (0.4) 

Table 47 provides details of the full cohort overall and by site. Individuals starting an NSAID at site 3 
were older (mean age 60.3 years) and had greater comorbidity. For example, across all three sites, 4.7% 
of individuals starting an NSAID had an anemia diagnosis, while at site 3, this percentage was 7.4% 
versus 1.8% and 2.4% at sites 1 and 2, respectively. Also, 16.2% of individuals from site 3 had a diagnosis 
of osteoarthritis, while this percentage was 8.6% and 5.7% at sites 1 and 2, respectively (Table 47). 
Within 30 days following NSAID initiation, 0.2% (N = 4991) had an UGI bleeding diagnosis (any care 
setting; 0.1% at sites 1 and 2, 0.3% at site 3). 
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Table 47. Characteristics of Individuals in the Outcomes Detection Test Case 2 Population initiating an 
NSAID and Upper Gastrointestinal Bleeding Outcome within 30 Days by Site 

Variable 
All Sites 

(N = 2,289,772) 
Site 1 

(N = 95,182) 
Site 2 

(N = 1,121,061) 
Site 3 

(N = 1,073,529) 
Upper gastrointestinal bleeding coded diagnosis 
within 30 days after cohort entry, N (%) yes 4991 (0.2) 109 (0.1) 1325 (0.1)  3557 (0.3)  

Age in years, Mean (SD) 54.1 ( 17.9 ) 51.8 ( 16.7 ) 48.4 ( 16.8 ) 60.3 ( 17.1 ) 

Gender, % female 129,4241 (56.5) 54,263 (57.0) 621,155 (55.4) 618,823 (57.6) 

Race, N (%) 

   White 1,230,305 (53.7) 64,576 (67.8) 624,145 (55.7) 541,584 (50.4) 

   African American 205,874 (9.0) 5003 (5.3) 105,461 (9.4) 95,410 (8.9) 

   Other 205,920 (9.0) 3521 (3.7) 185,249 (16.5) 17,150 (1.6) 

   Unknown 647,673 (28.3) 22,082 (23.2) 206,206 (18.4) 419,385 (39.1) 

Hispanic ethnicity, N (%) yes 250,954 (11.0) 13,598 (14.3) 221,279 (19.7) 16,077 (1.5) 

Year of cohort entry 

   2008 574,035 (25.1) 22,364 (23.5) 316,487 (28.2) 235,184 (21.9) 

   2009 476,178 (20.8) 18,721 (19.7) 244,394 (21.8) 213,063 (19.8) 

   2010 395,560 (17.3) 17,007 (17.9) 189,406 (16.9) 189,147 (17.6) 

   2011 367,272 (16.0) 16,530 (17.4) 166,774 (14.9) 183,968 (17.1) 

   2012 360,724 (15.8) 15,543 (16.3) 154,576 (13.8) 190,605 (17.8) 

   2013 116,003 (5.1) 5017 (5.3) 49,424 (4.4) 61,562 (5.7) 

Baseline hemoglobin CPT code, % yes a 39.8 29.7 27.6 53.4 

Baseline hemoglobin result available, % yes a 39.5 43.3 47.5 30.8 

Baseline hemoglobin value, mean (SD) a 13.7 (1.6) 14.5 (1.6) 13.6 (1.6) 13.6 (1.5) 

   Females mean (SD) 13.1 (1.3) 14.0 (1.4) 13.0 (1.3) 13.1 (1.3) 

   Males mean (SD) 14.5 (1.5) 15.5 (1.6) 14.6 (1.5) 14.4 (1.5) 

Follow-up CPT code, % yes b 17.2 15.3 14.6 20.1 

Follow-up hemoglobin result available, % yes b 12.6 14.6 17.6 7.1 

Number of ambulatory medical visits during baseline, 
mean (SD) a 5.4 ( 7.3 ) 6.3 ( 8.4 ) 4.0 ( 6.2 ) 6.9 ( 8.0 ) 

Emergency department visits during baseline, % yes a 13.3 10.7 13.1 13.6 

Hospitalization during baseline, % yes a 5.7 3.7 4.3 7.2 

Institutional stay during baseline, % yes a 3.5 0.7 0.5 6.9 

No medical encounters during baseline, % with no 
encounters a 14.5 12.5 19.6 9.4 

Number of unique therapeutic classes dispensed 
during baseline, mean (SD) a 3.4 (3.7) 2.8 (3.2) 2.5 (3.1) 4.5 (4.1) 

Comorbidity score, mean (SD) a 0.3 (1.3) 0.3 (1.1) 0.2 (1.0) 0.4 (1.6) 

Individual Comorbidities, N (%) yes a 

   Alcohol abuse 23,135 (1.0) 1332 (1.4) 12,309 (1.1) 9494 (0.9) 

   Anemia 108,289 (4.7) 1754 (1.8) 27,003 (2.4) 79,532 (7.4) 
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Variable 
All Sites 

(N = 2,289,772) 
Site 1 

(N = 95,182) 
Site 2 

(N = 1,121,061) 
Site 3 

(N = 1,073,529) 

   Cardiac arrhythmias 88,978 (3.9) 2658 (2.8) 21,948 (2.0) 64,372 (6.0) 

   Chronic heart failure 25,099 (1.1) 554 (0.6) 2329 (0.2) 22,216 (2.1) 

   Coagulopathy 14,727 (0.6) 509 (0.5) 3764 (0.3) 10,454 (1.0) 

   Dementia 10,969 (0.5) 265 (0.3) 1901 (0.2) 8803 (0.8) 

   Fluid/Electrolyte disorders c < 6 (0) N/A N/A N/A 

   Complicated diabetes c 90 (0.0) N/A N/A N/A 

   Hemiplegia c 7 (0) N/A N/A N/A 

   AIDS/HIV 3256 (0.1) 42 (0.0) 1473 (0.1) 1741 (0.2) 

   Hypertension 721,880 (31.5) 18,241 (19.2) 214,119 (19.1) 489,520 (45.6) 

   Liver disease 26,571 (1.2) 1008 (1.1) 12,202 (1.1) 13,361 (1.2) 

   Metastatic cancer c 9 (0) N/A N/A N/A 

   Psychoses c 205 (0.0) N/A N/A N/A 

   Pulmonary circulation disorders c 121 (0.0) N/A N/A N/A 

   Chronic pulmonary disease 94,559 (4.1) 2174 (2.3) 14,655 (1.3) 77,730 (7.2) 

   Peripheral vascular disease 57,922 (2.5) 972 (1.0) 10,699 (1.0) 46,251 (4.3) 

   Renal failure 11,008 (0.5) 212 (0.2) 2331 (0.2) 8465 (0.8) 

   Any tumor 33,268 (1.5) 811 (0.9) 10,569 (0.9) 21,888 (2.0) 

   Weight loss 929 (0.0) 24 (0.0) 305 (0.0) 600 (0.1) 

   Osteoarthritis 246,355 (10.8) 8205 (8.6) 63,900 (5.7) 174,250 (16.2) 

   Rheumatoid arthritis 28,990 (1.3) 963 (1.0) 6653 (0.6) 21,374 (2.0) 

   Gastro-esophageal reflux 185,528 (8.1) 7765 (8.2) 79,031 (7.0) 98,732 (9.2) 

   Any cancer 33,275 (1.5) 811 (0.9) 10,569 (0.9) 21,895 (2.0) 

   Chronic kidney disease 100,019 (4.4) 3455 (3.6) 30,664 (2.7) 65,900 (6.1) 

Selected Medications and Biologics a 

Drugs that affect coagulation, N (%) yes 46,338 (2.0) 2085 (2.2) 10795 (1.0) 33,458 (3.1) 

Misoprostol, N( %) yes 2433 (0.1) 68 (0.1) 1581 (0.1) 784 (0.1) 

Prescription H2 blockers, N (%) yes 109,264 (4.8) 4513 (4.7) 56,536 (5.0) 48,215 (4.5) 

Prescription proton pump inhibitors, N (%) yes 254,245 (11.1) 11,972 (12.6) 80,975 (7.2) 161,298 (15.0) 

Antiplatelets, N (%) yes 54,910 (2.4) 858 (0.9) 7813 (0.7) 46,239 (4.3) 

Oral glucocorticoids, N (%) yes 162,711 (7.1) 6254 (6.6) 41,062 (3.7) 115,395 (10.7) 

Selective serotonin reuptake inhibitors, N (%) yes 244,489 (10.7) 11,816 (12.4) 90,270 (8.1) 142,403 (13.3) 

Transfusion (packed cells or whole blood), N (%) yes 1827 (0.1) 50 (0.1) 661 (0.1) 1116 (0.1) 

Epoetin, N (%) yes 4791 (0.2) 129 (0.1) 1120 (0.1) 3542 (0.3) 

a Within the 183 days prior to cohort entry 
b Within the 30 days after cohort entry 
c Site numbers not shown because some sites < 6 
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Hemoglobin result value availability in the full cohort 

Patients with HGB results available before, after, and both before and after NSAID initiation are shown 
in Table 48. Within this cohort newly-starting an NSAID, 45.3% had at least one HGB result available 
within 365 days before or within 30 days after starting the NSAID (or both). HGB result availability varied 
from 33.8% at site 3, to 50.4% at site 1, and to 55.8% at site 2. Overall, 32.7% had a HGB result available 
only before, 5.8% had a HGB result available only within 30 days after, and 6.8% had HGB results 
available both before and after NSAID initiation.  

HGB result availability by care location where the laboratory specimen was obtained is also shown in 
Table 48. Only site 2 had laboratory results from the emergency department. Some patients with HGB 
results only within the 365 days before NSAID initiation had results from more than one care location 
(i.e., total > 100%), but at all sites over 90% of patients with HGB results obtained only before NSAID 
initiation had HGB results from the outpatient setting. In addition, at sites 1 and 2 respectively, 13.4% 
and 7.8% of patients with HGB results only before NSAID initiation had results from inpatient settings. At 
site 2, 19.6% of patients with HGB results obtained only before NSAID initiation had HGB results from 
the emergency department. Similar patterns of care locations where HGB results were obtained were 
observed for patients with results only after NSAID initiation and for patients with HGB results both 
before and after NSAID initiation (Table 48). Among patients with HGB results available both before and 
after NSAID initiation, 76.1% had results from the outpatient setting, but this proportion was heavily 
influenced by 99.0% of the HGB results being from the outpatient location at site 3. For sites 1 and 2, 
higher proportions of HGB results were obtained from non-outpatient locations. This highlights the 
importance of missingness of laboratory result values from the inpatient and emergency department 
care settings when an acute outcome is being assessed. 
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Table 48. Hemoglobin Laboratory Result Value Availability within 365 days before and within 30 days 
after starting an NSAID, Overall and by Site 

Hemoglobin Result Value Availability a, b, c Overall 
(N = 2,289,772) 

Site 1 
(N = 95,182) 

Site 2 
(N = 1,121,061) 

Site 3 
(N = 1,073,529) 

Available at any time within 365 days before to 30 days after NSAID Initiation 

Yes 1,036,29419 (45.3) 47,947 (50.4) 625,961 (55.8) 363,075 (33.8) 

No 1,253,553 (54.7) 47,235 (49.6) 495,864 (44.2) 710,454 (66.2) 
Timing of Availability 

Before NSAID Initiation Only 747,640 (32.7) 34,034 (35.8) 426,798 (38.1) 286,808 (26.7) 
After NSAID Initiation Only 132,507 (5.8) 6773 (7.1) 92,987 (8.3) 32,747 (3.1) 

Both before and after NSAID initiation 156,072 (6.8) 7140 (7.5) 105,412 (9.4) 43,520 (4.1) 

 
Care Setting where Laboratory Specimen was 

Obtained 
    

Before NSAID initiation only a, b, c Overall 
(N =747,640) 

Site 1 
(N = 34,034) 

Site 2 
(N = 426,798) 

Site 3 
(N = 286,808) 

Emergency department 83,503 (11.2) N/A 83,503 (19.6) N/A 
Inpatient 40,320 (5.4) 4548 (13.4) 33,407 (7.8) 2365 (0.8) 

Outpatient  707,746 (94.7) 32,661 (96.0) 389,710 (91.3) 285,375 (99.5) 

 
After NSAID initiation only a, b, c Overall 

(N = 132,507) 
Site 1 

(N = 6773) 
Site 2 

(N = 92,987) 
Site 3  

(N =32,747) 
Emergency department 17,007 (12.8) N/A 17,007 (18.3) N/A 

Inpatient 3069 (2.3) 470 (6.9) 2276 (2.4) 323 (1.0) 

Outpatient 117,434 (88.6) 6442 (95.1) 78,537 (84.5) 32,455 (99.1) 
 

Both before and after NSAID initiation a, b, c Overall  
(N = 156,072) 

Site 1 
(N = 7140) 

Site 2 
(N = 105,412) 

Site 3 
(N = 43,520) 

Emergency and Emergency 12,344 (7.9) N/A 12,344 (11.7) N/A 

Emergency and Inpatient 12,650 (8.1) N/A 12,650 (12.0) N/A 
Emergency and Outpatient  21,957 (14.1) N/A 21,957 (20.8) N/A 

Inpatient and Emergency 6315 (4.0) N/A 6315 (6.0) N/A 

Inpatient and Inpatient 14,016 (9.0) 524 (7.3) 13,227 (12.5) 265 (0.6) 

Inpatient and Outpatient 14,217 (9.1) 1177 (16.5) 12,768 (12.1) 272 (0.6) 
Outpatient and Emergency 22,056 (14.1) N/A 22,056 (20.9) N/A 

Outpatient  and Inpatient 18,123 (11.6) 1030 (14.4) 16,820 (16.0) 273 (0.6) 
Outpatient and Outpatient 118,695 (76.1) 6135 (85.9) 69,481 (65.9) 43,079 (99.0) 

a Only Site 2 has emergency department laboratory test results available in the MSDD 
b Outpatient setting reflects outpatient and “unknown” locations considered together because Mini-Sentinel Data Partners 
have stated that laboratory results with the setting variable populated with “unknown” are primarily outpatient laboratory 
test results 
c The N in each setting do not add to the N for the “Any” setting or “Overall” numbers because the same individual could have 
had HGB results from more than one setting (i.e., same individual could be counted in different settings) 
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Upper gastrointestinal bleeding outcomes in the full cohort 

As shown in Table 49, inpatient diagnoses (regardless of whether or not HGB results were available to 
document a HGB drop > 3 g/dL; group 1), accounted for 1657 (21.7%) of the UGI bleeding cases across 
the sites (details of specific coded diagnoses in Appendix I). Using HGB results indicating a HGB drop > 3 
g/dL together with an UGI bleeding diagnosis assigned in a non-inpatient setting (group 2) only 
identified an additional 58 cases (0.8%) across all sites. Using a HGB drop > 3 g/dL and no coded UGI 
bleeding diagnosis (group 3) added 2619 (34.3%) cases (Appendix I). Non-inpatient diagnoses without 
available HGB results or with a HGB drop < 3 g/dL accounted for 3303 (43.4%) cases (group 4). Care 
locations where HGB results were obtained (for identifying HGB drops > 3 g/dL in groups 2 and 3) are in 
Appendix I. 

Table 49. Upper Gastrointestinal (UGI) Bleeding Outcomes within 30 Days in the Full Cohort after 
NSAID Initiation using Varied Outcomes Definitions, Overall and by Site 

Group Bleeding Outcomes Criteria (mutually exclusive groups) Data Partner Site 

All Sites Site 1 Site 2 Site 3 

1 
Inpatient diagnoses (with or without an observed HGB drop > 3 
g/dL) 

1657 
(21.7) 

30 (11.7) 
520 

(14.9) 
1107 
(28.4) 

2 Non-inpatient diagnosis with drop in HGB > 3 g/dL 58 (0.8) 2 (0.8) 41 (1.2) 15 (0.4) 

3 
Observed drop in HBG > 3 g/dL (no coded UGI bleeding 
diagnosis) 

2619 
(34.3) 

148 
(57.6) 

2160 
(61.9) 

311 (8.0) 

4 Non-inpatient diagnosis without observed drop in HGB 
3303 
(43.3) 

77 (30.0) 
769 

(22.0) 
2457 
(63.2) 

1 – 4 Total bleeding outcomes a 7637 257 3490 3890 

Group Bleeding Outcomes Criteria Excluding Group 3 (mutually 
exclusive groups) 

All Sites Site 1 Site 2 Site 3 

1 
Inpatient diagnoses (with or without an observed HGB drop > 3 
g/dL) 

1657 
(33.0) 

30 (27.5) 
520 

(39.1) 
1107 
(30.9) 

2 Non-inpatient diagnosis with drop in HGB > 3 g/dL 58 (1.2) 2 (1.8) 41 (3.1) 15 (0.4) 

4 Non-inpatient diagnosis without observed drop in HGB 
3303 
(65.8) 

77 (70.6) 
769 

(57.8) 
2457 
(68.7) 

1, 2, 4 Total UGI bleeding outcomes without Group 3 a 5018 109 1330 3579 
a Includes all UGI bleeding outcomes within 30 days after T0, whether or not the individual had an NSAID switch within those 
30 days. Therefore, the total N in this row differs from the total N of UGI bleeding outcomes shown in Table 47 because it 
also includes UGI bleeding outcomes in the 27 additional individuals (site 2 = 5, site 3 = 22) who had an UGI bleed within 30 
days after T0 but after the date of switching to an NSAID other than the NSAID dispensed on T0. 
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Importantly, because some patients in group 3 were anticipated to have a coded bleeding diagnosis 
from a non-UGI site, to further understand the cases identified using only a drop in HGB > 3 g/dL, the 
Workgroup examined all coded bleeding diagnoses in group 3 patients. We found only 250 (9.5%) of 
group 3 patients had any coded non-UGI bleeding diagnosis (Appendix I). Among these 250 patients, 
common sites included obstetric or gynecologic, pulmonary, and intracranial (subarachnoid, cerebellar, 
intracerebral, subdural). To further characterize the patients captured in group 3, the Workgroup 
investigated the overall array of diagnoses occurring between NSAID initiation and bleeding outcome 
within these patients. Across all sites, the most frequently coded diagnoses included high-prevalence 
conditions (e.g., hypertension, dyslipidemia, diabetes), the use of therapies associated with potential 
bleeding or the consequences of bleeding (e.g., long-term aspirin, anticoagulant therapy, acute post-
hemorrhagic anemia), non-hemorrhagic conditions associated with anemia (e.g., autoimmune and 
inflammatory diseases, chronic infections, chronic conditions), and indications of use (e.g., pain). In light 
of these findings, the Workgroup does not recommend the use of a HGB drop > 3 g/dL and no coded UGI 
bleeding diagnosis (group 3) to identify UGI bleeding or bleeding in general, due to the 
underperformance in identifying specific bleeding sites or bleeding events in general versus non-
hemorrhagic conditions. 

If the 2619 group 3 cases are not included as part of the total UGI bleeding cases within 30 days after 
NSAID initiation (bottom section of Table 49), the number of UGI bleeding cases drops more 
dramatically at sites 1 and 2 than at site 3. As a result, the percentage of cases contributed by inpatient 
diagnoses (group 1) and by non-inpatient diagnoses without an observed drop in HGB (group 4) shifts to 
a greater degree at sites 1 and 2 than at site 3. Availability of HGB results alters estimated numbers 
(and rates) of UGI bleeding outcomes after NSAID initiation more at sites that have a higher 
percentage of the population with laboratory results available than at sites where laboratory results 
are missing in a higher percentage of the population.  

Because the definition used in group 4 (non-inpatient diagnoses without available HGB results or with a 
HGB drop < 3 g/dL) identified a much larger proportion of UGI bleeding events compared with group 1 
and 2, the Workgroup examined whether the distribution of the most frequently coded UGI diagnoses in 
group 4 was similar to that observed in groups 1 and 2. In general, there was reasonably good 
agreement between specific UGI diagnoses identified in group 4 and other groups. As an example, 
across all sites the most frequent five coded UGI diagnoses in group 4 (UGI hemorrhage, peptic ulcer, 
antral ulcer, hematemesis, and duodenal ulcer) overlapped with the four most frequently occurring UGI 
diagnoses in groups 1 and 2 (Appendix I, Tables 1-3). Good agreement was also found within each site 
when individually assessed. On the basis of these findings, the Workgroup agrees that the definition 
used to identify bleeding events in group 4 may be a reasonable strategy to consider for UGI bleeding 
definition augmentation. 

Confirmation rate of upper gastrointestinal bleeding diagnosis code in the full cohort: proportions of 
available HGB result values consistent with HGB decrease > 3 g/dL 

As shown in Table 50, among patients with bleeding identified through a coded inpatient diagnosis 
(group 1), 13.9% could be confirmed as having a drop in HGB > 3 g/dL using HGB result values available 
in the MSDD before and after NSAID initiation, 15.6% had a drop in HGB < 3 g/dL confirmed using HGB 
result values available before and after NSAID initiation, and 70.5% had no HGB results data available 
before and/or after NSAID initiation (i.e., the bleed could not be confirmed using available laboratory 
results). Among the patients with bleeding identified through a coded diagnosis from the non-inpatient 
setting (groups 2 and 4), 1.7% were confirmed as having a drop in HGB > 3 g/dL using HGB result values 
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available before and after NSAID initiation (the 58 individuals in group 2), 12.2% had a drop in HGB < 3 
g/dL confirmed using two HGB result values available before and after NSAID initiation, and 80.9% had 
no HGB results available before and/or after NSAID initiation (group 4). 

Table 50 also provides information about numbers and percentages of individuals in each group who 
had HGB laboratory procedure claims codes (CPT). For example, in group 1, of the 230 (13.9%) 
individuals with a HGB value drop > 3 g/dL, 81.3% had a HGB CPT code both before and after NSAID 
initiation; of the 1168 (70.5%) individuals with HGB results missing, 30.2% had a HGB CPT code both 
before and after NSAID initiation. This disparity between HGB result values and CPT claims further 
confirms the missingness of HGB laboratory results in the MSDD. 

Table 50. Confirmation of Upper Gastrointestinal Bleeding Diagnosis Code in the Full Cohort by 
Available Hemoglobin Result Values Consistent with HGB Decrease > 3 g/dL 

Group HGB Value Decrease > 3 g/dL d HGB Value Decrease < 3 g/dL HGB results missing before 
and/or after NSAID initiation 

(i.e., unable to determine HGB 
change) 

Tota
l 

CPT 
both 

a 

CPT 
one b 

CPT 
neithe

r c 

Subtota
l 

CPT 
both 

CPT 
one 

CPT 
neithe

r 

Subtota
l 

CPT 
both 

CPT 
one 

CPT 
neithe

r 

Subtota
l 

1 
(inpatient 
diagnosis)(
N = 1657) 

187 
(81.3

) 

42 
(18.3

) 
1 (0.4)  

230 
(13.9) 

215 
(83.0

) 

41 
(15.8

) 
3 (1.2) 

259 
(15.6) 

353 
(30.2

) 

644 
(55.1

) 

171 
(14.6) 

1168 
(70.5) 

165
7 

2 (non-
inpatient 
diagnosis 
with drop 
in HGB > 3 
g/dL)(N = 
58) 

49 
(84.5

) 

8 
(13.8

) 
1 (1.7) 58 (1.7)          

4 (non-
inpatient 
diagnosis 
without 
observed 
drop in 
HGB)(N = 
3303) 

    
331 

(80.9
) 

68 
(16.6

) 

10 
(2.4) 

409 
(12.2) 

728 
(25.2

) 

1606 
(55.5

) 

560 
(19.4) 

2894 
(86.1) 

336
1 

1, 2, and 4 
Total 

236 
(81.9

) 

50 
(17.4

) 
2 (0.7) 

288 
(5.7) 

546 
(81.7

) 

109 
(16.3

) 

13 
(1.9) 

668 
(13.3) 

1081 
(26.6

) 

2250 
(55.4

) 

731 
(18.0) 

4062 
(80.9) 

501
8 

a CPT code for HGB test before and after NSAID initiation 
b CPT code for HGB test before or after NSAID initiation but not both 
c No CPT code for HGB test 
d Percentages in CPT columns are row percentages of the corresponding Subtotal column; percentages in Subtotal columns are 
row percentages of Total column 
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c. Outcomes Detection Test Case 2 descriptive analysis of ibuprofen and indomethacin sub-cohort 

NSAID prescriptions in the ibuprofen and indomethacin sub-cohort 

Table 51 provides details of the sub-cohort starting ibuprofen (N = 924,656) or indomethacin (N = 
100,869). Individuals starting ibuprofen were younger (mean age 47.1 years) and included a higher 
proportion of women (57.0%) than individuals starting indomethacin (mean age 58.1 years; 30.8% 
women). In general, patients starting ibuprofen or indomethacin from site 3 had greater comorbidity. 
For example, across all three sites, less than 1% (0.7%) of individuals starting ibuprofen took an 
anticoagulant, and 3.2% of individuals starting indomethacin took an anticoagulant. However, at site 3 
those percentages were 1.7% and 5.3%, respectively (Table 51).  

Within 30 days following ibuprofen initiation, 0.1% (N = 1066) had an UGI bleeding diagnosis (any care 
setting; 0.1% at sites 1 and 2, 0.2% at site 3). Within 30 days after indomethacin initiation, 0.4% (N = 
378) of individuals had an UGI bleeding diagnosis (any care setting; 0.1% at site 1, 0.2% at site 2, 0.6% at 
site 3).  

Table 51. Characteristics of Individuals in the Outcomes Detection Test Case 2 Population, Initiation of 
Ibuprofen or Indomethacin and Upper Gastrointestinal Bleeding Outcome within 30 Days by Site 

Variable Ibuprofen Indomethacin 
Site 1 
(N = 

24,974) 

Site 2 
(N = 

638,729) 

Site 3 
(N = 

260,953) 

All Sites 
(N = 

924,656) 

Site 1 
(N = 

8400) 

Site 2 
(N = 

45,165) 

Site 3 
(N = 

47,304) 

All Sites 
(N = 

100,869) 
Upper gastrointestinal 
bleeding coded 
diagnosis within 30 
days after cohort 
entry, N (%) yes 22 (0.1) 428 (0.1) 616 (0.2) 1066 (0.1) 12 (0.1) 91 (0.2) 275 (0.6) 378 (0.4) 

Age in years, Mean 
(SD) 46.1 (14.9) 44.3 (15.3) 54.1 (18.1) 47.1 (16.7) 

50.7 
(13.9) 53.5 (15.3) 63.8 (14.5) 58.1 (15.8) 

Gender, % female 
15,863 
(63.5) 

359,585 
(56.3) 

151,222 
(57.9) 

526,670 
(57.0) 

1994 
(23.7) 

13,635 
(30.2) 

15,401 
(32.6) 

31,030 
(30.8) 

Race, N (%) 

   White 
14,987 
(60.0) 

332,829 
(52.1) 

97,185 
(37.2) 

445,001 
(48.1) 

5799 
(69.0) 

24,873 
(55.1) 

26,675 
(56.4) 

57,347 
(56.9) 

   African American 2037 (8.2) 
67,485 
(10.6) 

21,915 
(8.4) 91,437 (9.9) 

388 
(4.6) 3285 (7.3) 

5313 
(11.2) 8986 (8.9) 

   Other 1043 (4.2) 
106,260 

(16.6) 3916 (1.5) 
111,219 

(12.0) 
404 
(4.8) 

10,763 
(23.8) 957 (2.0) 

12,124 
(12.0) 

   Unknown 6907 (27.7) 
132,155 

(20.7) 
137,937 

(52.9) 
276,999 

(30.0) 
1809 
(21.5) 

6244 
(13.8) 

14,359 
(30.4) 

22,412 
(22.2) 

Hispanic ethnicity, N 
(%) yes 4564 (18.3) 

138,533 
(21.7) 4141 (1.6) 

147,238 
(15.9) 

887 
(10.6) 

5815 
(12.9) 358 (0.8) 7060 (7.0) 

Year of cohort entry 

   2008 6151 (24.6) 
183,914 

(28.8) 
58,119 
(22.3) 

248,184 
(26.8) 

2319 
(27.6) 

14,916 
(33.0) 

11,663 
(24.7) 

28,898 
(28.6) 

   2009 5100 (20.4) 
139,556 

(21.8) 
52,167 
(20.0) 

196,823 
(21.3) 

1800 
(21.4) 

10,778 
(23.9) 

9802 
(20.7) 

22,380 
(22.2) 

   2010 4387 (17.6) 
105,806 

(16.6) 
45,895 
(17.6) 

156,088 
(16.9) 

1507 
(17.9) 

7240 
(16.0) 

8079 
(17.1) 

16,826 
(16.7) 

   2011 4234 (17.0) 
93,537 
(14.6) 

43,468 
(16.7) 

141,239 
(15.3) 

1304 
(15.5) 

5819 
(12.9) 

7883 
(16.7) 

15,006 
(14.9) 

   2012 3790 (15.2) 
8,7823 
(13.7) 

46,136 
(17.7) 

137,749 
(14.9) 

1148 
(13.7) 

5034 
(11.1) 

7648 
(16.2) 

1,830 
(13.7) 
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Variable Ibuprofen Indomethacin 

Site 1 
(N = 

24,974) 

Site 2 
(N = 

638,729) 

Site 3 
(N = 

260,953) 

All Sites 
(N = 

924,656) 

Site 1 
(N = 

8400) 

Site 2 
(N = 

45,165) 

Site 3 
(N = 

47,304) 

All Sites 
(N = 

100,869) 

   2013 1312 (5.3) 28,093 (4.4) 
15,168 

(5.8) 44573 (4.8) 
322 
(3.8) 1378 (3.1) 2229 (4.7) 3929 (3.9) 

Baseline hemoglobin 
CPT code, % yes a 30.0 24.1 47.8 31.0 25.9 29.3 54.5 40.8 

Baseline hemoglobin 
result available, % yes 
a 41.6 43.3 29.5 39.3 37.9 49.7 27.2 38.2 

Baseline hemoglobin 
value, mean (SD) a 14.4 (1.7) 13.7 (1.6) 13.6 (1.5) 13.7 (1.6) 

15.2 
(1.6) 14.0 (1.8) 13.8 (1.6) 14.0 (1.7) 

   Females mean (SD) 13.9 (1.5) 13.0 (1.3) 13.1 (1.3) 13.1 (1.3) 
14.1 
(1.4) 13.0 (1.5) 13.0 (1.3) 13.1 (1.5) 

   Males mean (SD) 15.7 (1.5) 14.8 (1.3) 14.5 (1.4) 14.8 (1.4) 
15.8 
(1.5) 14.6 (1.6) 14.3 (1.6) 14.6 (1.7) 

Follow-up CPT code, % 
yes b 15.0 13.1 17.5 14.4 22.0 20.9 27.6 24.1 

Follow-up hemoglobin 
result available, % yes b 14.1 15.8 16.1 13.0 21.1 24.1 9.0 16.7 

Number of ambulatory 
medical visits during 
baseline, mean (SD) a 4.8 (6.8) 3.2 (5.2) 5.5 (7.2) 3.8 (5.9) 4.9 (6.9) 4.3 (6.9) 6.6 (7.6) 5.4 (7.3) 

Emergency 
department visits 
during baseline, % yes a 11.7 12.0 15.1 12.9 9.5 12.3 14.0 12.8 
Hospitalization during 
baseline, % yes a 4.1 2.5 6.2 3.6 2.8 4.4 7.7 5.8 
Institutional stay 
during baseline, % yes a 0.2 0.2 6.0 1.8 0.2 2.0 6.7 4.1 

No medical encounters 
during baseline, % with 
no encounters a 14.6 22.6 14.4 20.1 19.1 21.3 10.2 15.9 
Number of unique 
therapeutic classes 
dispensed during 
baseline, mean (SD) a 2.2 (2.7) 2.0 (2.6) 3.8 (3.8) 2.5 (3.1) 2.5 (2.9) 3.1 (3.3) 4.9 (4.1) 3.9 (3.8) 

Comorbidity score, 
mean (SD) a 0.2 (0.8) 0.1 (0.7) 0.3 (1.4) 0.2 (0.9) 0.1 (0.9) 0.2 (1.4) 0.5 (1.7) 0.3 (1.5) 

Individual Comorbidities, N (%) yes a 

   Alcohol abuse 368 (1.5) 6178 (1.0) 2592 (1.0) 9138 (1.0) 
155 
(1.8) 703 (1.6) 550 (1.2) 1408 (1.4) 

   Anemia 481 (1.9) 11173 (1.7) 16702 (6.4) 28356 (3.1) 72 (0.9) 1269 (2.8) 3489 (7.4) 4830 (4.8) 

   Cardiac arrhythmias 332 (1.3) 5049 (0.8) 10355 (4.0) 15736 (1.7) 
163 
(1.9) 1140 (2.5) 4044 (8.5) 5347 (5.3) 

   Chronic heart failure 77 (0.3) 508 (0.1) 3814 (1.5) 4399 (0.5) 36 (0.4) 125 (0.3) 1372 (2.9) 1533 (1.5) 
   Coagulopathy 78 (0.3) 970 (0.2) 2027 (0.8) 3075 (0.3) 40 (0.5) 209 (0.5) 597 (1.3) 846 (0.8) 

   Dementia c 18 (0.1) 415 (0.1) 1612 (0.6) 2045 (0.2) N/A N/A N/A 439 (0.4) 
   Complicated 
diabetes c N/A N/A N/A 15 (0.0) N/A N/A N/A < 6 (0.0) 

  Fluid/Electrolyte dis 
orders c N/A N/A N/A < 6 (0.0) N/A N/A N/A < 6 (0.0) 

   Hemiplegia c N/A N/A N/A < 6 (0.0) N/A N/A N/A < 6 (0.0) 
   AIDS/HIV 15 (0.1) 868 (0.1) 637 (0.2) 1520 (0.2) 7 (0.1) 74 (0.2) 51 (0.1) 132 (0.1) 
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Variable Ibuprofen Indomethacin 

Site 1 
(N = 

24,974) 

Site 2 
(N = 

638,729) 

Site 3 
(N = 

260,953) 

All Sites 
(N = 

924,656) 

Site 1 
(N = 

8400) 

Site 2 
(N = 

45,165) 

Site 3 
(N = 

47,304) 

All Sites 
(N = 

100,869) 

   Hypertension 3296 (13.2) 
86,818 
(13.6) 

94,598 
(36.3) 

184,712 
(20.0) 

1768 
(21.0) 

12,409 
(27.5) 

25,975 
(54.9) 

40,152 
(39.8) 

   Liver disease 276 (1.1) 6093 (1.0) 3598 (1.4) 9967 (1.1) 91 (1.1) 569 (1.3) 580 (1.2) 1240 (1.2) 

   Metastatic cancer c N/A N/A N/A < 6 (0.0) N/A N/A N/A < 6 (0.0) 
   Psychoses c N/A N/A N/A 60 (0.0) N/A N/A N/A 6 (0.0) 

   Pulmonary 
circulation disorder c N/A N/A N/A 22 (0.0) N/A N/A N/A 6 (0.0) 

   Chronic pulmonary 
disease 270 (1.1) 4338 (0.7) 

14,295 
(5.5) 18,903 (2.0) 

116 
(1.4) 885 (2.0) 3800 (8.0) 4801 (4.8) 

   Peripheral vascular 
disease 103 (0.4) 2484 (0.4) 7977 (3.1) 10,564 (1.1) 71 (0.8) 621 (1.4) 2520 (5.3) 3212 (3.2) 
   Renal failure 17 (0.1) 372 (0.1) 1396 (0.5) 1785 (0.2) 7 (0.1) 124 (0.3) 695 (1.5) 826 (0.8) 

   Any tumor 139 (0.6) 4346 (0.7) 4461 (1.7) 8946 (1.0) 70 (0.8) 716 (1.6) 1507 (3.2) 2293 (2.3) 

   Weight loss c N/A N/A N/A 170 (0.0) N/A N/A N/A 77 (0.1) 

   Osteoarthritis 1246 (5.0) 20,712 (3.2) 
26,114 
(10.0) 48,072 (5.2) 

458 
(5.5) 2547 (5.6) 

6222 
(13.2) 9227 (9.1) 

   Rheumatoid arthritis 163 (0.7) 2191 (0.3) 3350 (1.3) 5704 (0.6) 34 (0.4) 248 (0.5) 741 (1.6) 1023 (1.0) 

   Gastro-esophageal 
reflux 1672 (6.7) 32,535 (5.1) 

19,884 
(7.6) 54,091 (5.8) 

539 
(6.4) 3076 (6.8) 3630 (7.7) 7245 (7.2) 

   Any cancer 139 (0.6) 4346 (0.7) 4461 (1.7) 8946 (1.0) 70 (0.8) 716 (1.6) 1507 (3.2) 2293 (2.3) 

   Chronic kidney 
disease 298 (1.2) 7169 (1.1) 11689 (4.5) 19156 (2.1) 

215 
(2.6) 2265 (5.0) 4471 (9.5) 6951 (6.9) 

Selected Medications and Biologics a 

Drugs that affect 
coagulation, N (%) yes 204 (0.8) 2182 (0.3) 4485 (1.7) 6871 (0.7) 

102 
(1.2) 619 (1.4) 2525 (5.3) 3246 (3.2) 

Misoprostol, N( %) yes 41 (0.2) 1256 (0.2) 329 (0.1) 1626 (0.2) N/A N/A N/A 37 (0.0) 

Prescription H2 
blockers, N (%) yes 933 (3.7) 25,596 (4.0) 9475 (3.6) 36,004 (3.9) 

346 
(4.1) 2571 (5.7) 2344 (5.0) 5261 (5.2) 

Prescription proton 
pump inhibitors, N (%) 
yes 2402 (9.6) 33,715 (5.3) 

30,347 
(11.6) 66,464 (7.2) 

835 
(9.9) 3227 (7.1) 

6231 
(13.2) 

10,293 
(10.2) 

Antiplatelets, N (%) yes 87 (0.3) 2144 (0.3) 7129 (2.7) 9360 (1.0) 83 (1.0) 490 (1.1) 2924 (6.2) 3497 (3.5) 
Oral glucocorticoids, N 
(%) yes 1377 (5.5) 18,810 (2.9) 

22,480 
(8.6) 42,667 (4.6) 

682 
(11.9) 2557 (5.7) 

6022 
(12.7) 

15,164 
(9.2) 

Selective serotonin 
reuptake inhibitors, N 
(%) yes 2898 (11.6) 45,646 (7.1) 

31,044 
(11.9) 79,588 (8.6) 

635 
(7.6) 3057 (6.8) 4481 (9.5) 8173 (8.1) 

Transfusion (packed 
cells or whole blood), 
N (%) yes 25 (0.1) 276 (0.0) 271 (0.1) 572 (0.1) N/A N/A N/A 173 (0.2) 

Epoetin, N (%) yes N/A N/A N/A 855 (0.1) N/A N/A N/A 345 (0.3) 
a Within the 183 days prior to cohort entry 
b Within the 30 days after cohort entry 
c Individual cell numbers not shown because some N = 6 
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Hemoglobin result value availability in the ibuprofen and indomethacin sub-cohort 

Numbers and percentages of patients with HGB results available before, after, and both before and after 

ibuprofen or indomethacin was started are shown in Table 52. Across this sub-cohort, 53.2% of 

individuals starting ibuprofen and 52.9% of individuals starting indomethacin had at least one HGB result 

available within 365 days before or within 30 days after the NSAID was started (or both). HGB result 

availability varied more among patients starting indomethacin, ranging from 36.2% at site 3 to 69.6% at 

site 2. Overall, among individuals starting indomethacin, 38.2% had a HGB result available only before, 

16.8% had a HGB result available only within 30 days after, and 8.3% had HGB results available both 

before and after initiation. Overall, among individuals starting ibuprofen, 39.3% had a HGB result 

available only before, 13.3% had had a HGB result available only after, and 6.4% had HGB results 

available both before and after initiation. Site-specific information for both NSAIDs is also in Table 52. 

HGB result availability by care location where the laboratory specimen was obtained is also shown in 

Table 52. Patterns of HGB result availability by care location for this sub-cohort of individuals are similar 

the full cohort, once again highlighting the importance of missing laboratory result values from the 

inpatient and emergency department settings when an acute outcome is being assessed. 
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Table 52. Hemoglobin Laboratory Result Value Availability within 365 days before and within 30 days 
after Starting Ibuprofen or Indomethacin, Overall and by Site 

Hemoglobin Result Value 
Availability Before and 

After Ibuprofen or 
Indomethacin Initiation  

a, b, c, d 

Ibuprofen Indomethacin 

All Sites 
(N = 

924,656) 

Site 1 
(N = 

24,974) 

Site 2 
(N = 638,729) 

Site 3 
(N = 

260,953) 

All Sites 
(N = 100,869) 

Site 1 
(N = 8400) 

Site 2 
(N = 45,165) 

Site 3 
(N = 

47,304) 

Available at any time within 365 days before to 30 days after ibuprofen or indomethacin Initiation 

Yes 
492,035 

(53.2) 
13,781 
(55.2) 

379,753 
(59.5) 

98,501 
(37.7) 

53,334 (52.9) 
4784 
(57.0) 

31,449 
(69.6) 

17,101 
(36.2) 

No 
432,621 

(46.8) 
11,193 
(44.8) 

258,976 
(40.5) 

162,452 
(62.3) 

47,535 (47.1) 
3616 
(43.0) 

13,716 
(30.4) 

30,203 
(63.8) 

Timing of availability 

Before NSAID Initiation 
Only 

363,636 
(39.3) 

10,393 
(41.6) 

276,326 
(43.3) 

76,917 
(29.5) 

38,486 (38.2) 
3183 
(37.9) 

22,437 
(49.7) 

12,866 
(27.2) 

After NSAID Initiation 
Only 

120,992 
(13.1) 

3518 
(14.1) 

101,364 
(15.9) 

16,110 (6.2) 16,988 (16.8) 
1782 
(21.2) 

10,926 
(24.2) 

4280 (9.0) 

Both before and after 
NSAID initiation 

58,793 (6.4) 1980 (7.9) 47,830 (7.5) 8983 (3.4) 8227 (8.2) 696 (8.3) 5131 (11.4) 2400 (5.1) 

 

Before Ibuprofen or 
Indomethacin initiation 

only a, b, c 

All Sites 
(N = 

363,636) 

Site 1 
(N = 

10393) 

Site 2 
(N = 

276,326) 

Site 2 
(N = 76,917) 

All Sites 
(N = 38,486) 

Site 1 
(N = 3183) 

Site 2 
(N = 22,437) 

Site 3 
(N = 

12,866) 

Emergency department 
55,278 
(15.2) 

0 (0.0) 55,278 (20.0) 0 (0.0) 5086 (13.2) 0 (0.0) 5086 (22.7) 0 (0.0) 

Inpatient 23,639 (6.5) 
1381 
(13.3) 

21,662 (7.8) 596 (0.8) 2993 (7.8) 414 (13.0) 2447 (10.9) 132 (1.0) 

Outpatient 
336,146 

(92.4) 
9964 
(95.9) 

249,583 
(90.3) 

76,599 
(99.6) 

36,627 (95.2) 
3044 
(95.6) 

20,793 
(92.7) 

12,790 
(99.4) 

 

After Ibuprofen or 
Indomethacin initiation 

only a, b, c 

All Sites 
(N = 

120,992) 

Site 1 
(N = 3518) 

Site 2 
(N = 

101,364) 

Site 3 
(N = 16,110) 

All Sites 
(N = 16,988) 

Site 1 
(N = 1782) 

Site 2 
(N = 10,926) 

Site 3 
(N = 4280) 

Emergency department 
27,290 
(22.6) 

0 (0.0) 27,290 (26.9) 0 (0.0) 1450 (8.5) 0 (0.0) 1450 (13.3) 0 (0.0) 

Inpatient 8034 (6.6) 760 (21.6) 7100 (7.0) 174 (1.1) 695 (4.1) 101 (5.7) 544 (5.0) 50 (1.2) 

Outpatient 
95,458 
(78.9) 

2963 
(84.2) 

76,533 (75.5) 
15,962 
(99.1) 

15,699 (92.4) 
1729 
(97.0) 

9732 (89.1) 
4238 
(99.0) 

 

Both before and 
Ibuprofen or 

Indomethacin initiation a, 

b, c 

All Sites 
(N = 58,793) 

Site 1 
(N = 1980) 

Site 2 
(N = 47,830) 

Site 3 
(N = 8983) 

All Sites 
(N = 8227) 

Site 1 
(N = 696) 

Site 2 
(N = 5131) 

Site 3 
(N = 2400) 

Emergency and 
Emergency 

5403 (9.2) 0 (0.0) 5403 (11.3) 0 (0.0) 445 (5.4) 0 (0.0) 445 (8.7) 0 (0.0) 

Emergency and Inpatient 2288 (3.9) 0 (0.0) 2288 (4.8) 0 (0.0) 275 (3.3) 0 (0.0) 275 (5.4) 0 (0.0) 

Emergency and 
Outpatient 

8026 (13.7) 0 (0.0) 8026 (16.8) 0 (0.0) 957 (11.6) 0 (0.0) 957 (18.7) 0 (0.0) 

Inpatient and Emergency 1798 (3.1) 0 (0.0) 1798 (3.8) 0 (0.0) 218 (2.6) 0 (0.0) 218 (4.2) 0 (0.0) 

Inpatient and Inpatient 2369 (4.0) 198 (10.0) 2104 (4.4) 67 (0.7) 298 (3.6) 32 (4.6) 252 (4.9) 14 (0.6) 

Inpatient and Outpatient 3984 (6.8) 249 (12.6) 3686 (7.7) 49 (0.5) 561 (6.8) 112 (16.1) 429 (8.4) 20 (0.8) 
Outpatient and 

Emergency 
12064 
(20.5) 

0 (0.0) 12064 (25.2) 0 (0.0) 797 (9.7) 0 (0.0) 797 (15.5) 0 (0.0) 

Outpatient and Inpatient 5420 (9.2) 510 (25.8) 4835 (10.1) 75 (0.8) 462 (5.6) 51 (7.3) 390 (7.6) 21 (0.9) 

Outpatient and 
Outpatient 

41,600 
(70.8) 

1516 
(76.6) 

31,201 (65.2) 8883 (98.9) 7075 (86.0) 639 (91.8) 4065 (79.2) 
2371 
(98.8) 
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Hemoglobin Result Value 
Availability Before and 

After Ibuprofen or 
Indomethacin Initiation  

a, b, c, d 

Ibuprofen Indomethacin 

All Sites 
(N = 

924,656) 

Site 1 
(N = 

24,974) 

Site 2 
(N = 638,729) 

Site 3 
(N = 

260,953) 

All Sites 
(N = 100,869) 

Site 1 
(N = 8400) 

Site 2 
(N = 45,165) 

Site 3 
(N = 

47,304) 

a Only Site 2 has emergency department laboratory test results available in the MSDD 
b Outpatient and unknown settings are considered together because Mini-Sentinel Data Partners have stated that laboratory results with 
the “setting” variable populated with “unknown” are primarily outpatient laboratory test results 
c The N in each setting do not add to the N for the “Any” setting or “Overall” numbers because the same individual could have had HGB 
results from more than one setting (i.e., same individual could be counted in different settings) 

Upper gastrointestinal bleeding outcomes in the ibuprofen and indomethacin sub-cohort 

As shown in the top section of Table 53, inpatient UGI bleeding diagnoses, regardless of whether or not 
a drop in HGB was available from laboratory results, accounted for 15.0% of the bleeding outcomes 
within 30 days after ibuprofen initiation and 33.3% of the bleeding outcomes after indomethacin 
initiation (group 1). Available HGB results (HGB drop > 3 g/dL) together with an UGI bleeding diagnosis 
assigned in a non-inpatient setting identified < 1% of the UGI bleeding cases (group 2). A HGB drop > 3 
g/dL and no coded bleeding diagnosis identified 54.0% (N = 1253) of the bleeding cases in individuals 
taking ibuprofen and 23.8% (N = 118) of the bleeding cases in individuals taking indomethacin (group 3). 
Non-inpatient diagnoses without available HGB results or with a HGB drop < 3 g/dL accounted for 30.3% 
of cases among individuals taking ibuprofen and 42.3% of cases among individuals taking indomethacin 
(group 4).  

Given that we previously determined only 9.5% of group 3 patients across the entire NSAID cohort had 
any non-UGI bleeding diagnosis within 30 days (section VIIF2b), the Workgroup did not include group 3 
cases in the total of UGI bleeding cases for this sub-cohort initiating ibuprofen or indomethacin (bottom 
section of Table 53). Similar to the entire cohort, it is again clear that availability of HGB result values 
alters the estimated numbers (and rates) of UGI bleeding outcomes after ibuprofen or indomethacin 
initiation more at sites that have a higher percentage of the population with laboratory results available 
than at sites where laboratory results are missing in a higher percentage of the population.  
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Table 53. Upper Gastrointestinal Bleeding Outcomes within 30 Days after initiating Ibuprofen or 
Indomethacin using Varied Outcomes Definitions, Overall and by Site 

Grou
p 

Bleeding Outcomes 
Criteria (mutually 

exclusive categories) 
 

Data Partner Site 

All Sites Site 1 Site 2 Site 3 

Ibuprofen Indomet
h 

Ibuprofe
n 

Indome
th 

Ibuprofen Indomet
h 

Ibuprofe
n 

Indomet
h 

1 Inpatient diagnoses 
(with or without an 
observed HGB drop > 
3 g/dL) 

348 
(15.0) 

165 
(33.3) 

7 (9.1) 4 
(14.8) 

170 
(10.9) 

39 
(22.4) 

171 
(24.8) 

122 
(41.4) 

2 Non-inpatient 
diagnosis with drop in 
HGB > 3 g/dL 

16 (0.7) 3 (0.6) 0 (0.0) 1 (3.7) 14 (0.9) 2 (1.1) 2 (0.3) 0 (0.0) 

3 Observed drop in HBG 
> 3 g/dL (no coded UGI 
bleeding diagnosis) 

1253 
(54.0) 

118 
(23.8) 

55 
(71.4) 

15 
(55.6) 

1125 
(72.4) 

83 
(47.7) 

73 
(10.6) 

20 (6.8) 

4 Non-inpatient 
diagnosis without 
observed drop in HGB 

702 
(30.3) 

210 
(42.3) 

15 
(19.5) 

7 
(25.9) 

244 
(15.7) 

50 
(28.7) 

443 
(64.3) 

153 
(51.9) 

 1 - 4 Total bleeding 
outcomes 

2319 496 77 27 1553 174 689 295 

Grou
p 

Bleeding Outcomes 
Criteria (mutually 

exclusive categories) 

All Sites Site 1 Site 2 Site 3 

Ibuprofen Indomet
h 

Ibuprofe
n 

Indome
th 

Ibuprofen Indomet
h 

Ibuprofe
n 

Indomet
h 

1 Inpatient diagnoses 
(with or without an 
observed HGB drop > 
3 g/dL) 

348 
(32.6) 

165 
(43.7) 

7 (31.8) 4 
(33.3) 

170 
(39.7) 

39 
(42.9) 

171 
(27.8) 

122 
(44.4) 

2 Non-inpatient 
diagnosis with drop in 
HGB > 3 g/dL 

16 (1.5) 3 (0.8) 0 (0.0) 1 (0.8) 14 (3.3) 2 (2.2) 2 (0.3) 0 (0.0) 

4 Non-inpatient 
diagnosis without 
observed drop in HGB 

702 
(65.9) 

210 
(55.6) 

15 
(68.2) 

7 
(58.3) 

244 
(57.0) 

50 
(54.9) 

443 
(71.9) 

153 
(55.6) 

1, 2, 
4 

Total UGI bleeding 
outcomes without 
Group 3 

1066 378 22 12 428 91 616 275 

d. Summary of Outcomes Detection Test Case 2 

In the MSDD, from these three participating sites, HGB results were available at any time within 365 
days before to 30 days after NSAID initiation for 45.3% of the cohort. HGB results availability varied by 
data partner site. Only 6.8% of the cohort had a HGB result available both within 365 days before to 30 
days after NSAID initiation. Locations where HGB results were obtained at the sites that contribute 
inpatient laboratory results (integrated healthcare delivery systems) and emergency department 
laboratory results highlight the importance of having laboratory result values from the inpatient and 
emergency department care settings when an acute outcome such as UGI bleeding is assessed.  

Using available HGB result values indicating a HGB drop > 3 g/dL together with an UGI bleeding diagnosis 
assigned in a non-inpatient setting identified few additional cases. Use of HGB result values alone to 
identify cases of bleeding cannot be used to reliably detect UGI bleeding outcomes. 
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Across the entire cohort of patients identified as having an UGI bleeding outcome within 30 days after 
NSAID initiation using a coded inpatient diagnosis, only 13.9% were confirmed as having a HGB decrease 
> 3 g/dL using HGB result values available both before and after NSAID initiation. An additional 15.6% 
were confirmed as having a HGB decrease < 3 g/dL. However, a high percentage of those individuals had 
CPT codes available both before and after NSAID initiation, indicating that HGB result values were 
missing in the MSDD but the HGB laboratory tests had been performed. 

3. Summary of the performance of laboratory test results in outcomes detection 

In these outcomes detection test cases, we assessed whether including laboratory results increased the 
number of individuals identified as developing the outcome of interest. The test case addressing UGI 
bleeding required assessing change in laboratory result values between baseline and follow-up time 
periods, while the test case addressing incident diabetes used follow-up laboratory result values only. 
Variability in missingness was again observed across sites.  

In the first test case, laboratory results did not identify diabetes outcomes earlier but did identify 
additional outcomes at all three participating data partner sites. The rate increased the least at the large 
national insurer site, the site with the lowest percentage of the cohort with laboratory results available. 

In the second outcomes test case, use of laboratory test results alone (i.e., without a coded diagnosis) 
was helpful for detecting a few additional bleeding outcomes, but was not helpful for detecting UGI 
bleeding outcomes (i.e., the specific body site required for the test case), and in some cases, the values 
of the clinical laboratory results were consistent with other outcomes (e.g., anemia of chronic disease). 
Availability of laboratory result values again altered the estimated numbers of outcomes after drug 
initiation more at sites that had a high percentage of the cohort with laboratory results available than at 
sites that had a higher percentage of the cohort with missing laboratory results. 

In conclusion, in one outcome test case, including laboratory results identified an important number of 
additional outcomes, while in the other test case few additional outcomes were identified using 
laboratory results data. Based on results of these two test cases, laboratory test results should be used 
judiciously to supplement outcomes detection. The decision to include laboratory results as criteria for 
outcomes detection must be made on a scenario-by-scenario basis after consideration of the scenario-
specific parameters and degree of missingness of the laboratory results.  

4. Considerations around censoring patients from the cohort if no outcome result value is 
observed 

Censoring in longitudinal studies aims to remove individuals from a cohort when they are no longer at 
risk of the outcome or when the outcome cannot be expected to be captured. For a morbidity outcome, 
censoring at time of death or health plan disenrollment are typically straightforward decisions. In 
contrast, decisions to censor based on elapsed time without a laboratory result or without a medical 
visit are less clear (i.e., the laboratory result or the medical visit cannot be considered as an indicator in 
determining whether the individual has the outcome because lack of the outcome detection may reflect 
lack of care seeking).  

Consider the scenario where a decision is made to censor patients 12 months after the medical product 
exposure if no laboratory results are observed within that time interval, but then the patient has the 
outcome observed at month 13. Should the patient have been censored at month 12? In general, it is 
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preferred to determine follow-up duration a priori based on biological plausibility rather than making a 
data driven decision later in the project. 

Considerations around the decision to censor are not always straightforward and can vary depending on 
the nature of the outcome studied. Two idealized (extreme) examples help illustrate these points. In 
these examples, it is assumed that (similar to Data Partner Sites 1 and 2 in this methods work) 
laboratory results are reliably available in the MSDD if the laboratory test was completed. 

1. Condition presents with symptoms. Laboratory test results are expected to then be gathered as 
part of the clinical assessment and therefore available in the dataset. In this condition, time 
without laboratory test results is meaningful – because it implies that the condition did not occur 
-- and the laboratory test results should be considered. 

2. Condition is asymptomatic. The condition is only detected if laboratory tests are done, and 
laboratory tests are typically ordered as screening or monitoring tests rather than being 
prompted by clinical events or symptoms. In this condition, time without laboratory testing 
contributes little. It is reasonable that, if the individual does not have laboratory tests completed, 
the individual does not contribute any information and his or her follow up time should not 
contribute to the study. In this example, the decision of when to censor adds complexity because 
the laboratory test results may or may not provide information about when the condition 
occurred. The condition onset could have been at any time after the last “negative” laboratory 
test result or index date. Time to event analysis without considering this interval censoring is 
inappropriate. 99 

The idealized situations presented above often do not reflect real-life situations. There are some 
common complicating factors:  

1. Few diseases fit the extremes of the idealized situations. Diabetes, for example, usually presents 
asymptomatically but occasionally presents with symptoms. However, many conditions present 
“close enough” to one of the idealized extremes that it can still be appropriate to model the 
condition in that way. For example, with diabetes it is not necessarily incorrect to model it as if it 
were always asymptomatic, particularly in the adult population. 

2. Laboratory test results are often not used in isolation. That is, information about diagnosis codes 
and prescription medications are generally available in the observational data. How this 
information should be considered in the question of when to censor warrants future study.  

3. What should be done when we know we do not have all laboratory results that were actually 
performed (e.g., differences in the percentages of patients with laboratory procedure claims 
codes and result values from the large national insurer Data Partners)? Should those evaluations 
focus on procedure claims codes and visits rather than on laboratory test results? How this 
information should be considered in the question of when to censor also warrants future study.  

Determining time to censoring should take into account these considerations:  

1. Relative timeframe required to develop the outcome (i.e., outcomes with short lag time after 
medical product exposure favor censoring if no observed laboratory result within the anticipated 
outcome timeframe),  

2. Whether the outcome of interest is (usually) symptomatic or asymptomatic (i.e., symptomatic 
outcomes sometimes favor longer follow-up).  
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3. Length of follow-up (i.e., longer follow-up favors censoring if no laboratory testing or medical 
visit)  

4. Healthcare utilization (i.e., percentage with and without and frequency of medical care during 
follow-up as a proxy for “opportunity” for laboratory testing and visits),  

5. Completeness of capture of laboratory tests that were performed, (in general, making censoring 
and other decisions based on laboratory test result availability may be less advisable if capture of 
performed tests is poor). 

We recommend considering censoring in settings when cohorts have relatively long follow-up (relative 
to the expected onset of an asymptomatic outcome of interest or relative to the expected onset of an 
acutely symptomatic outcome), and in cohorts where healthcare utilization is confirmed for the majority 
of the cohort within the timeframe of interest. A censored cohort could be used to conduct a sensitivity 
analysis (or sensitivity analyses of different time points) to ensure study conclusions are robust to 
censoring decisions. The censoring criteria could be similar to the following: censor at X months for 
individuals who, at that time, have not yet had either the outcome of interest or the laboratory test 
result of interest. An alternative criterion, especially relevant for symptomatic outcomes, could be to 
censor if the individual has not had a medical visit within X months (i.e., if an individual with the 
outcome of interest could reasonability be expected to have had the laboratory test completed if seen 
by a clinician at a medical visit).  

5. Considerations around imputing outcomes 

In general, it can be helpful to impute covariates. However, in general, it is not helpful to impute 
outcomes (and imputing outcomes is not often done). Consider the following dataset: The outcome is 
completely observed for all individuals in the cohort, but some covariate data are missing for some 
individuals. In this scenario, imputation of the covariates could increase efficiency because if an 
individual has an observed outcome and has some observed and some missing covariates data, there is 
information in that individual’s data about the relationship(s) between the covariates and the outcome -
- even for individuals who have just partial covariate data. For example, if there were ten covariates and 
an individual was missing data for one covariate, there would be information in that individual’s data 
about the relationship between the outcome and the other nine covariates. In addition, individuals with 
complete data would provide information about the relationship between the missing covariate and the 
nine other covariates. If covariates adequately adjust for differences in who is missing the outcome, data 
are essentially MAR and MI, which assumes MAR data, can be used to impute the missing covariates. 
Now consider a dataset where the outcome is missing for some individuals in the cohort, but the 
covariates are completely observed. For an individual whose outcome is missing, his or her data contain 
information about the relationship between the covariates but no information about the relationship 
between the outcome and any of the covariates -- because the outcome is missing. All information 
about the relationship between the outcome and covariates must come from other individuals in the 
cohort. No efficiency is gained. In addition, analytic methods such as mixed models can be used to retain 
individuals with missing outcomes and account for missing outcome data if it is MAR. 

Imputation of laboratory results to identify individuals with the outcome of interest is problematic from 
a clinical perspective. The frequency of laboratory test ordering can be influenced by the health status of 
the individual in general and the clinician’s suspicion for the outcome of interest in particular. These are 
difficult factors to objectively measure. Laboratory test result values for the outcome of interest are 
likely to be MNAR in this scenario. With MNAR data, assumptions have to be made about parameters 
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that are not identifiable from the observed data. For example, we might make assumptions about how 
individuals with missing laboratory results data differ from individuals with complete data; these 
individuals may differ in ways that are not explained by their observed data. The key point is that 
assumptions must be made in absence of observed data.  

Most MNAR methods are relatively complex, but these methods are becoming more accessible. Some 
MNAR methods look within subgroups that have different sources of missing data. In the Mini-Sentinel 
setting, data partner sites are subgroups that can have different sources of missing data. While 
exploration of MNAR methods was beyond the scope of this project, the baseline confounder test case 
completed as part of this project that considered missing data models overall and then by sites gives a 
rough example of dealing with subgroup missing data models versus combined models.  

With data collected as part of routine healthcare delivery, one cannot be sure missing data are MCAR, 
MAR or MNAR.100 In all likelihood, with data such as those contained in the MSDD, and based on the 
findings from work conducted by this Workgroup, missing laboratory results data are never completely 
MCAR, MAR, or MNAR, but rather are a mixture of missing observations that are completely random 
and missing observations that depend on either observed data or unobserved data. 

VIII. RECOMMENDATIONS AND SPECIFICATIONS FOR INCORPORATING MINI-
SENTINEL DISTRIBUTED DATABASE LABORATORY RESULTS DATA INTO MINI-
SENTINEL SAFETY ANALYSES 

The Workgroup selected and tested methods for use when analyzing observational healthcare 
administrative, EHR, and other clinical databases, with specific attention to clinical laboratory results 
when missing data are expected. In the context of medical product safety surveillance in the MSDD 
environment, the Workgroup evaluated the use of laboratory results for baseline confounding 
adjustment, cohort identification, and detecting health outcomes. This section of the report provides 
recommendations and specifications for incorporating laboratory results data into Mini-Sentinel safety 
analyses. Based on findings from Workgroup activities, we discuss whether we can increase use of these 
data for various purposes, provide recommendations on strategies for increasing use of laboratory 
results data, and discuss whether and how laboratory results data can be incorporated into the Mini-
Sentinel Routine Analytic Framework and Protocol-Based Assessments (PBA). 

A. AVAILABILITY OF LABORATORY RESULTS DATA IN MSDD 

In section III A we provided an overview of the availability of laboratory results data in MSDD and 
sources of missing data. In consultation with FDA investigators in the Workgroup, seven missing data 
test cases (3 baseline confounder, 2 cohort identification, and 2 health outcomes) were selected 
(section VII B). Each test case was essentially a separate cohort study. Three representative Data 
Partners provided data for the test cases (section VII C).  

In considering use of laboratory results data for medical product safety surveillance, important 
considerations are recognizing that missingness exists and that the level of missing data differs 
substantially across Data Partners. To appropriately use laboratory results data, steps must be taken to 
assess the extent of missing data for the specific scenario, to characterize the missingness by site, and to 
apply statistical tools that aid in managing and minimizing the missing data challenges (discussed further 
below). 
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B. USE OF LABORATORY RESULTS DATA FOR BASELINE CONFOUNDER ADJUSTMENT 

Based on the findings from the baseline confounder test cases (section VII D), we list below how 
laboratory results data can be used for baseline confounder adjustment to support medical product 
safety surveillance. 

1. Improvements in confounding adjustment 

Findings from these test cases indicated that laboratory test results were strongly associated with 
outcomes but had limited impact as confounder adjustments. There was great variability in missing data 
patterns for specific laboratory test results and across sites. Therefore, we do not generalize our finding 
that laboratory test result adjustments will not have substantial impacts on other cohorts or other 
analyses. Additional scenarios could be explored in which laboratory test results are, for example, strong 
baseline confounders. 

2. Performance of missing data methods 

Different missing data methods often provided comparable “answers.” Comparable results were 
particularly evident in comparisons of multiple imputation (MI) methods. Missing data estimated by MI 
using either predictive mean matching (PMM) or regression methods resulted in identical or very similar 
point and CI estimates (i.e., differing by no more than 0.01 in both test cases 1 and 2). PMM produced 
wider CIs. Test case 2 results also suggested that the performance of missing data methods (MI 
regression method, MI PMM, vs. indicator variable method) was similar. Indicator variable method and 
PMM produced similar results in test case 3. However, models that ignored missing data (especially in 
site-specific analyses) or complete case models gave results different from models using MI methods. 
This was somewhat expected because complete case models assume data are missing completely at 
random (MCAR), whereas laboratory test results data can be MCAR, missing at random (MAR), missing 
not at random (MNAR), or a combination of MCAR, MAR, and MNAR; therefore employing complete 
case analysis with MAR or MNAR data provides biased estimates.  

Differences in run times are important considerations. We employed SAS® version 9.3 or 9.4 for all 
analyses. The MI PMM and the MI regression methods had large differences in run times. As an 
example, both these methods were used to impute missing creatinine values in baseline confounder 
adjustment test case 2. This cohort had 198,265 members with 45% missing creatinine. MI using the 
regression method in SAS® version 9.4 required less than five minutes of run time and less than one 
minute of CPU time. By contrast, MI PMM was substantially less efficient; run time was over five hours 
and required 23 minutes of CPU time. Given the comparable performance in results and differences in 
computational efficiency, we recommend using the MI regression method. We do not know whether 
such dramatic differences in run time would occur with other software packages.  

3. Site differences 

Covariate associations with missing data varied across sites. Missing data methods need to allow for this 
variability, for example, by conducting imputations within sites or by employing models that include site 
by variable interaction terms. 

Given differences across sites in missingness, cohort characteristics, and predictors of missingness, site-
specific estimates and analytic methods that allow for site differences in associations with treatment 
and outcomes are recommended over a single pooled analysis with site indicators for adjustment. For 
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example, wider CIs were observed in meta-analyses that combined site-specific imputed results 
compared to pooled data analyses (test case 1), likely influenced by varied associations in the site-
specific imputations models.  

4. Other considerations 

The literature review by the Workgroup (section IV) offers important lessons: 

 Most literature relating to laboratory results data addresses Patient-Level or Provider-Level 
missing data. Little is known about how to handle Facility-Level, Organization-Level, Care-Setting 
Level, and Temporal-Level Missingness.  

 Methods with known limitations, such as simple mean or median replacement of missing values 
that result in inappropriately small standard errors, should not be considered for Mini-Sentinel 
activities.  

 Consistent patterns of missing laboratory results data should not be expected across studies. 
Missing data patterns are influenced by the specific laboratory test(s) of interest, study 
population characteristics, and provider and system factors. Describing missing data overall and 
by key variables within the study population is an important early step in studies.  

The complexities of reasons for missing laboratory results data deserve thoughtful discussion during 
analysis planning. Any missing data technique will produce biased estimates if the underlying 
assumptions about the data are violated. MCAR, MAR, and MNAR are assumptions that govern the 
performance of missing data handling strategies.2  Complete case analysis assumes and requires MCAR 
data, which rarely holds for missing laboratory results and should not be used. MAR patterns may be 
found, but are difficult to confirm. MI, a common missing data technique, requires the less stringent 
MAR assumption. This is one reason MI techniques are recommended. Whether there is evidence of a 
strong MNAR pattern should be considered. 

C. USE OF LABORATORY RESULTS DATA FOR COHORT IDENTIFICATION 

In the cohort identification test cases, we assessed whether using laboratory results enhanced 
identification of a cohort, either increasing the size of the cohort or identifying individuals for cohort 
inclusion at an earlier date than they would have been identified using only diagnoses and procedures. 
Both cohort identification test cases showed that cohort sizes were augmented through inclusion of 
laboratory results; one test case also suggested earlier identification of individuals occurs when cohort 
inclusion uses laboratory results data in addition to diagnosis and procedure codes. However, given the 
variability in missing data patterns for specific laboratory results and across sites, it is again possible that 
these results may not generalize to other cohorts or other analyses. The magnitude of gain in cohort size 
depends on the specific laboratory test and the specific cohort. For routine Mini-Sentinel work, we 
recommend considering the use of laboratory results data to assist in cohort identification in 
combination with algorithms based on diagnosis and procedure codes and medications. Studies should 
adjust for site variations and further study the subgroup of individuals in the cohort who only have a 
laboratory-based indicator in the observational database, in particular within the context of implications 
related to risks of drug exposures.  

Characterizing the population helps inform misclassification bias. This is because laboratory data are 
‘opportunistic,’ that is, data are available (or missing) for reasons that may not be known by, and 
beyond the control of, the investigator. Characterizing individuals who are only included in the cohort by 
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use of laboratory results can clarify whether those individuals should be included. At a minimum, 
sensitivity analyses with and without such individuals are recommended. 

D. USE OF LABORATORY RESULTS DATA FOR OUTCOMES DETECTION 

In the outcomes detection test cases we assessed whether including laboratory test results increased 
the number of individuals identified as developing the outcome of interest. These test cases required 
assessing change in laboratory result values between baseline and follow-up time periods. Again, given 
the variability in missingness for specific laboratory results and across sites, our findings may or may not 
generalize to other cohorts or analyses. 

In the first outcomes test case, including laboratory result values did not identify diabetes outcomes 
earlier but did identify additional outcomes. At all three sites, the outcome rates increased when 
diagnosis codes, medications, and laboratory result values were considered versus considering only 
diagnosis codes and medications. The rate increased the least at the large national insurer, the site with 
the lowest proportion of available laboratory result values. 

In the second outcomes test case, availability of laboratory result values again altered the numbers of 
outcomes after drug initiation more at sites that had a high proportion of the cohort with laboratory 
results available than at sites with a higher proportion of missing laboratory results. However, in the 
second outcomes test case, use of laboratory results alone was not useful for detecting the bleeding 
outcome at the body site specific to the test case (upper gastrointestinal tract). 

The differences between the usefulness of the laboratory results in the two outcomes test cases is 
related to the “specificity” of the laboratory test types. In the first outcomes test case, glucose was the 
laboratory test of interest. Glucose laboratory result values are part of the diagnostic pathway of the 
diabetes outcome, an outcome that is not body site specific. In the second outcomes test case, 
hemoglobin was the laboratory test of interest. While hemoglobin result values are part of the 
diagnostic pathway of the bleeding outcome, the body site where the bleeding occurred is also an 
important component of this outcome. In the first test case, use of the glucose laboratory results alone, 
when the result value was above a known threshold, was sufficient to indicate the outcome. In the 
second test case, use of change in the hemoglobin laboratory results alone was insufficient to indicate 
the outcome because evidence of the specific body site of bleeding was also required.  

Defining outcomes using diagnosis codes, procedures, and laboratory result values can introduce 
inconsistency across sites if codes, etc., are available or missing for reasons unknown to the investigator. 
Missingness of laboratory results can further accentuate site inconsistencies because of differing 
practices and laboratory results data availability. Thus, using laboratory results can contribute false 
negatives and false positives, although using laboratory results potentially can contribute more false 
negative and false positives than diagnosis codes.  

From a statistical perspective, it is often appropriate and helpful to impute covariates. However, it 
usually is neither appropriate nor helpful to impute outcomes and, therefore, we do not recommend 
imputing them (section VII F 5). 

We make no general recommendation about employing laboratory results data to detect health 
outcomes. Decisions about whether or not to include laboratory results in algorithms that identify 
health outcomes in the MSDD should be made on a scenario-by-scenario basis. 
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E. RECOMMENDATION FOR THE GENERAL PROCESS FOR INCORPORATING LABORATORY 
RESULTS DATA INTO MINI-SENTINEL SAFETY ANALYSES 

We recommend the following approach to include laboratory results data in Mini-Sentinel safety 
analyses. Aspects of this approach may include automated analyses that are already part of Mini-
Sentinel’s Routine Analytic Framework; other aspects require enhancements to existing tools for 
conducting routine analyses (discussed in the next section). 

1. Baseline confounder adjustment 

 Describe missing data in the study cohort is an important step in considering missing data 
technique options overall and by site. Characterizing the population helps inform potential bias. 
Characterization of missing laboratory results data can clarify why data are available for certain 
people and not others. 

 Investigate predictors of missing laboratory results values overall and by site. 

 Select approaches to handling missing laboratory results data. Three approaches were compared 
by this Workgroup: MI by regression, MI by PMM, and MI by indicator variable method. The MI 
regression method is common and easy to implement. Because MI approaches rely on a 
normality assumption, skewness should be assessed up front and a log-transformation should be 
performed to improve symmetry if needed.  

 Compare results between different strategies for handling laboratory results data (e.g., analyses 
that do not include laboratory results at all in the analysis and analyses that account for missing 
laboratory results using missing data techniques such as MI). The primary comparisons are the 
estimated coefficients and 95% CI for the exposures of interest. The first question is whether 
including laboratory results makes any difference. Consistent results enhance confidence in the 
findings, while differing results support the importance of using missing data techniques. 
Regardless, examination of varied models will enhance understanding of the importance of the 
laboratory results data.  

2. Cohort identification 

 Characterizing the population helps inform bias overall and by site (and across years if needed). 
Contrasting those identified by diagnosis or procedure codes alone, by laboratory results alone, 
or by either diagnosis or procedures codes or laboratory results should be performed during an 
early phase of the project.  

 In certain assessments, it can be useful to assess whether laboratory results enable cohort 
identification and inclusion earlier, apart from gains in cohort size, and to examine agreement 
between different cohort identification algorithms. These activities inform the tradeoffs between 
enhanced cohort identification and misclassification. 

3. Outcome detection 

 Characterize the population by exposure and by site. 

 Assess the availability of baseline laboratory result values across the cohort (by type of test as 
appropriate). 
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 Assess the availability of follow-up laboratory result values across the cohort (by type of test as 
appropriate). 

 Examine numbers of outcomes detected, contrasting different outcomes definitions (e.g., 
diagnosis, medication, laboratory results). 

 Compare the time to outcome detection, contrasting when laboratory results were and were not 
used for outcome detection. 

 Examine outcome rates for each site, stratified by whether or not any follow-up laboratory result 
value was available. Outcome rates may be higher among individuals with follow-up laboratory 
results available (regardless of whether the outcome was determined using laboratory results 
values), suggesting bias in selecting which individuals received laboratory testing. 

 Assess relationships between baseline characteristics and missing follow-up laboratory result 
values. 

 Assess the effect of the various outcome definitions on relationships between individual drug 
exposures and the first indicator of the outcome overall and by site 

F. RECOMMENDATIONS FOR INCORPORATING LABORATORY RESULTS DATA INTO MINI-
SENTINEL’S ROUTINE ANALYTIC FRAMEWORK 

The Mini-Sentinel Cohort Identification and Descriptive Analysis (CIDA) tool is the foundation of the 
Mini-Sentinel Routine Analytic Framework. CIDA supports identifying, extracting, and characterizing 
cohorts from the MSDD based on specifying requestor-defined options. This Workgroup employed the 
CIDA tool for test case cohort development when feasible. CIDA was not yet finalized when the data 
were extracted for the first baseline confounder adjustment test case, and the first outcome test case 
used the same dataset as the first baseline confounder adjustment test case. CIDA was not used in those 
two test cases. Across the other five test cases, CIDA was used to identify four of the five cohorts.  

A challenge that precluded successful use of the Mini-Sentinel Routine Analytic Framework by this 
Workgroup was found when identifying the cohort for the baseline confounder test case that examined 
antimicrobial use among warfarin users. Cohort inclusion required an index warfarin date as well as an 
index antimicrobial date and also required temporal sequencing of those dates. The existing CIDA tool 
cannot handle multiple index dates or temporal sequencing. Custom coding was required to address 
those issues. Also, in that test case, covariate data returned using the CIDA tool were incorrectly 
anchored on the warfarin index date rather than (correctly anchored) on the antimicrobial index date. 
This limitation could not be remedied using existing Routine Analytic Framework capabilities. Based on 
what we learned from the warfarin baseline confounder test case, the Workgroup did not use the Mini-
Sentinel Routine Analytic Framework to identify the cohort for the CKD cohort identification test case 
because that test case also required more than one index date. For scenarios with complex index dates, 
custom coding to identify the cohort of interest is currently required.  

Custom coding was also required to explore the different methods of handling missing laboratory results 
data and to explore the different analytic techniques used in the test cases. Custom coding again was 
used in part because the CIDA tool first became available after commencement of this project; this 
project was one of the first to apply the CIDA tool. CIDA now has a module available for one of the 
analytic techniques used by this Workgroup (PS computation and matching). 
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The existing Mini-Sentinel Routine Analytic Framework has no modules available to date that describe 
missing data overall or by site or for applying missing data methods. Therefore, Mini-Sentinel Routine 
Analytic Framework modules would need to be developed to incorporate missing data techniques. 
Logical first steps would be to create a repeatable, reusable process to describe missing data within a 
cohort overall and by site to allow investigators to examine whether available laboratory test results 
data can be assumed to be MAR. This process would inform whether it is reasonable to impute the 
missing data. We recommend these steps, perhaps through forming a small workgroup charged with 
writing detailed functional specifications and processes to use CIDA to examine laboratory test results 
data when clinical laboratory data elements are required for a query. 

Other potential enhancements using SAS®, include developing a module that could use PROC MI to 
impute missing data and PROC MIANALYZE to combine model results from the multiple imputed 
datasets. Different techniques in PROC MI would be needed if multiple variables had missing data 
(versus only the one laboratory test result type we studied in each test cases examined by the 
Workgroup). In addition, methods to combine the model results will differ for varied analytic models 
(i.e., data to be saved and pulled into PROC MIANALYZE differs in the items and naming). Further, it 
would be preferable if investigators had an opportunity to examine predictors of the missing data and 
postulate whether MAR is a reasonable possibility. Despite these complexities, a reasonable step, if 
prioritized as an enhancement would be to develop a module that would allow missing data to be 
imputed and combined using these SAS® procedures for analytic techniques commonly in use. This 
module could be used as a sensitivity analysis to examine if conclusions are impacted.100, 101   

If multi-site laboratory results data enhanced by MI are to be routinely used in the Mini-Sentinel Routine 
Analytic Framework, enhancements to existing modules would be necessary. For example, the existing 
IPTW module in the Mini-Sentinel Routine Analytic Framework works with binary data, using Maentel–
Haenzel techniques to perform meta-analysis on site-specific PS-based outcome regression models. 
These enhanced modules would need to be aligned to enable use of output from the imputation steps 
(i.e., final summarized data from PROC MIANALYZE).  

Existing Mini-Sentinel query tools cannot utilize laboratory result values over time or changes in 
laboratory result values over time (i.e., sequential laboratory test result values). Assessing increases or 
decreases in laboratory result values is important for medical product safety surveillance, particularly for 
outcomes detection (assessed by this Workgroup) and for time-varying confounding (not in the scope of 
work of this Workgroup). If prioritized by the FDA, enhancing the existing Mini-Sentinel Routine Analytic 
Framework to enable assessment of multiple laboratory values over time and changes in the laboratory 
result values over time should be considered. The custom programming code used by this Workgroup 
could again inform the development of programming specifications to assess sequential laboratory 
result values, if this capability was prioritized for development. 
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G. RECOMMENDATIONS FOR INCORPORATING LABORATORY RESULTS DATA INTO MINI-
SENTINEL’S PROTOCOL-BASED ASSESSMENTS 

Given existing capabilities of the Mini-Sentinel Routine Analytic Framework, use of laboratory results 
data in current Mini-Sentinel evaluations will often be feasible only within PBA. As the capabilities of the 
Mini-Sentinel Routine Analytic Framework further develop, laboratory results data may be more feasible 
to include in routine automated queries.  

Each of the seven test case scenarios examined by this Workgroup was essentially a separate 
retrospective observational cohort study, whose purposes were methods development and 
examination. When viewed in that context, one can think of these seven test cases as seven separate 
PBAs.  

All customized programming code used for these test cases was prepared, tested, and quality-checked 
in accordance with Mini-Sentinel policies and procedures. Therefore, code developed by this Workgroup 
could be shared with other workgroups conducting PBAs. However, because the custom coding used by 
this Workgroup only underwent a portion of the quality checking process to which code developed for a 
PBA is usually subjected (because the custom coding in this project was for methods development, not a 
true PBA), the existing custom coding likely would need additional testing to be in compliance with Mini-
Sentinel Standard Operating Procedures depending on how and where the customized code was to be 
used in a future PBA. 

Additionally, the custom code developed by the Workgroup could be modularized for use with other 
types of laboratory test results, in conjunction with other exposures or other outcomes of interest. For 
instance, the programming code sets the Workgroup developed that identified complex index dates and 
temporal sequencing could be modularized for future use. Similarly, the programming code the 
workgroup developed that assessed change in laboratory result values over time could also be 
modularized for future use. 

H. CONCLUSIONS ABOUT INCORPORATING MINI-SENTINEL DISTRIBUTED DATABASE 
LABORATORY RESULTS DATA INTO MINI-SENTINEL SAFETY ANALYSES 

In conclusion, in all test cases, there were substantial differences in missing data across different Data 
Partners. This must be taken into consideration when using laboratory test results data.  

Laboratory test results were strongly associated with outcomes but had limited impact as baseline 
confounder adjustments. Given the variability in missing data patterns for specific laboratory test results 
and across sites, we cannot ensure the generalizability of our finding that laboratory result adjustments 
do not have substantial impacts when assessed in other cohorts or in other analyses. If a priority for the 
FDA, exploring additional scenarios using laboratory results as baseline confounder adjustment and 
exploring time-varying confounders should be considered. For time-varying confounders, enhancing the 
existing Mini-Sentinel Routine Analytic Framework to enable use of multiple result values of the same 
laboratory test result over time would be necessary.  

For routine Mini-Sentinel queries, where applicable, we recommend use of laboratory results data for 
cohort identification, supplementing algorithms based on diagnosis and procedure codes and 
medications. It will be important to adjust for site variations and to examine the subgroup of individuals 
who only have a laboratory-based indicator in the database, in particular within the context of bias and 
implications related to risks of drug exposures. The existing Mini-Sentinel Routine Analytic Framework 
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can be used for cohort identification, with the exception of situations in which multiple exposures and 
temporal relationships are required.  

Not surprisingly, the availability of laboratory results data identified additional health outcomes of 
interest. If it is a priority for the FDA to use laboratory test results to assess outcomes, the existing Mini-
Sentinel Routine Analytic Framework would require enhancement to enable assessing change in 
laboratory result values over time. Outcome detection using laboratory results values in addition to 
diagnosis and procedure codes (and medications) must also consider the substantial variation in missing 
data across sites.  

In summary, the existing Mini-Sentinel Routine Analytic Framework can enable identification some 
cohorts that utilize laboratory results data. However, the Mini-Sentinel Routine Analytic Framework 
cannot assist with missing data characterization. Other tasks required to use laboratory results currently 
require custom programming. Therefore, the overall conclusion of the Workgroup is that further 
enhancement of existing Mini-Sentinel Routine Analytic Framework is required prior to routine use of 
laboratory results data in query fulfillment. At the current time, use of laboratory results data can be 
primarily accomplished in Protocol-Based Assessments. 
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