

Data Mining for Adverse Drug Events With A Propensity Score Matched Tree-Based Scan Statistic

Shirley V. Wang¹, Judith C. Maro², Elande Baro³, Rima Izem³, Inna Dashevsky², James R. Rogers¹, Michael Nguyen⁴, Joshua J. Gagne¹, Elisabetta Patorno¹, Krista F. Huybrechts¹, Jacqueline M Major⁴, Esther Zhou⁴, Megan Reidy², Austin Cosgrove², Sebastian Schneeweiss¹, Martin Kulldorff¹

1. Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital;

- 2. Department of Population Medicine, Harvard Medical School , Harvard Pilgrim Health Care Institute
 - 3. Office of Biostatistics, Center for Drug Evaluation and Research, U.S. FDA
 - 4. Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, U.S. FDA

Disclosures

- This work supported by the U.S. Food and Drug Administration (FDA) through the Department of Health and Human Services (HHS) contract number: HHSF22301010T-0004
- At the time that this work was conducted, Dr. Wang was principal investigator on other grants from: U.S. HHS Agency for Healthcare Research and Quality (AHRQ), FDA Sentinel Initiative, and an investigator initiated grant from Novartis for unrelated research.
- Dr. Wang is a consultant to Aetion, Inc., a software company.

- A statistical data mining tool for signal detection
 - -Utilizes tree-based scan statistics
 - -Adjusts for multiple testing in evaluation of thousands of potential adverse events

- A statistical data mining tool for signal detection
 - -Utilizes tree-based scan statistics
 - -Adjusts for multiple testing in evaluation of thousands of potential adverse events

- A statistical data mining tool for signal detection
 - -Utilizes tree-based scan statistics
 - -Adjusts for multiple testing in evaluation of thousands of potential adverse events

- A statistical data mining tool for signal detection
 - -Utilizes tree-based scan statistics
 - -Adjusts for **multiple testing** in evaluation of thousands of potential adverse events

The Tree

- Multi-level Clinical Classifications (MLCCS)
 - –Includes all ICD-9 CM codes
 - -Hierarchical system
 - -4 levels of clinical concepts
 - Level 1 body systems, 18 categories
 - Level 2
 - Level 3
 - Level 4
 - Leaf

Greater specifity

Sentinel

How has TreeScan been used before?

- Scanning did not perform well in drug examples with selfcontrolled design when patients were "unstable" around time of exposure initiation
- Propensity score (PS) matched new initiator cohort is a powerful design that uses an active comparator selected to balance on time-varying factors around treatment initiation

Objective

 Conduct simulation with known truth to evaluate unconditional Bernoulli TreeScan statistic with PS matched cohort design

The Scan

T = unconditional Bernoulli scan statistic

$$T = \underset{G}{\max} LLR(G)$$
$$LLR(G) = ln\left(\frac{\left(\frac{c_G}{c_G + n_G}\right)^{c_G} \left(\frac{n_G}{c_G + n_G}\right)^{n_G}}{(p)^{c_G}(1 - p)^{n_G}}\right) I\left(\frac{c_G}{c_G + n_G} > p\right)$$

G = node of interest $c_G = cases in the treatment group for a given node$ $n_G = cases in the reference group for a given node$ p = probability of being in the treatment group (for 1:1 matched this is 0.5)

Maro, J et al. Using tree-based scan statistics to evaluate outcomes following incident antibiotic use. Sentinel Methods Protocol. Kulldorff, M. Drug safety data mining with a tree-based scan statistic. PDS, 2013

The Scan

T = unconditional Bernoulli scan statistic

Distribution of the test statistic T is unknown

- .: Use Monte Carlo based p-value = Rank/(9999+1)
 - 1. Generate T for 9999 random datasets (under the null)
 - 2. Rank T
 - 3. If observed T \geq 1% of T from 9999 datasets under the null

Maro, J et al. Using tree-based scan statistics to evaluate outcomes following incident antibiotic use. Sentinel Methods Protocol. Kulldorff, M. Drug safety data mining with a tree-based scan statistic. PDS, 2013 Kulldorff, M. TreeScan User Guide, version 1.2

Simulation

- "Plasmode" style simulation
 - Based on a real cohort extracted from a claims database instead of fully synthetic simulated data
 - Retains observed complexity and correlation for:
 - Baseline covariates
 - Clusters of outcomes across tree
- Permutes relationships between:
 - 1. Covariates and outcome
 - 2. Exposure and outcome

* Using routine query tool Cohort Identification and Descriptive Analysis [CIDA] + PS matching on Common Data Model [CDM] for matted data https://www.sentinelinitiative.org/sentinel/surveillance-tools/routine-querying-tools/routine-querying-system

Return individual level data on unmatched cohort

- 1. Identify cohort* (exposure and baseline covariates)
 - New initiators Dipeptidyl peptidase 4 (DPP4) inhibitors, sulfonylureas
 - 183 day washout, allow 30 day gaps in enrollment
 - No outcome specified
 - PS based on 26 predefined covariates (caliper = 0.025)
 - Age
 - Sex
 - Combined comorbidity score
 - Chronic kidney disease
 - Hypoglycemia
 - Diabetic nephropathy
 - Diabetic neuropathy
 - Diabetic retinopathy
 - Diabetic Peripheral Circulation Disorder

- Erectile dysfunction
- Skin Infections
- Diabetic complications unspecified
- Alpha glucosidase
- Glitazones
- Glucagon-like peptide-1 receptors agonists
- Insulin
- Meglitinides
- Metformin

- # outpatient visits
- # erectile dysfunction visits
- # inpatient (IP) visits
- # institutional stays
- # other visits
- # classes medication
- # generics
- # Rx dispensed

- Pull incident outcomes within fixed window for each patient (TreeExtraction)
 - Return incident outcomes for simulation permutation

- 3. Permute data for simulation
 - -11 scenarios
 - Maintain covariate structure for exposure and baseline covariates and clustered outcome "bundles"

Scenario	True Relative Risk	# Nodes w/ True Effect	Confounding?	Direction of Confounding
1	1.0	0	No	n/a
2	1.0	0	Yes	Positive (away from the null)
3	1.5			
4	2.0	3	No	n/a
5	4.0			
6	1.5			
7	2.0	3	Yes	Positive (away from the null)
8	4.0			
9	1.5			
10	2.0	3	Yes	Negative (toward the null)
11	4.0			

- 4. Repeat data generation 1,000 times for each simulation scenario
- 5. Varied degree of PS misspecification by identifying 1:1 matches based on:
 - Random sample without replacement
 - PS with random 40%, 50%, 60%, 80% of true confounders
 - PS with all confounders
- 6. Run TreeScan for 1,000 cohorts per simulation scenario
 - -Arbitrary threshold for alerting at p < 0.01

Selected nodes

With simulated elevation in risk related to exposure and/or confounding

Level 1	Diseases of the digestive system
Level 2	Gastrointestinal hemorrhage
Level 3	Hemorrhage from gastrointestinal ulcer
Level 4	
Leaf	Numerous diagnosis codes

Level 1	Diseases of the circulatory system	
Level 2	Cerebrovascular disease	
Level 3	Acute cerebrovascular disease	
Level 4	Acute but ill-defined cerebrovascular accident	
	Intracranial hemorrhage	
	Occlusion of cerebral arteries	
Leaf	Numerous diagnosis codes	

Level 1	Diseases of the genitourinary system		
Level 2	Diseases of the urinary system		
Level 3	Acute and unspecified renal failure		
Level 4	Acute renal failure		
	Unspecified renal failure		
Leaf	Numerous diagnosis codes		

Results: Take-home points

True Effect	Confounding	Performance
Null	None	False positive (type 1 error) as expected
Null	+	Unadjusted \rightarrow inflated type 1 100% adjusted \rightarrow type 1 as expected
+	-	Better adjustment \rightarrow recover power
+	None/+/-	PS with random 80% of true confounders performed similarly to PS with 100% of true confounders in most evaluated scenarios
+	None/+/-	Co-occurring outcomes also alerted

- Neither false alerts nor confounding
- Hierarchical MLCCS classification system is organ based
- Data reflect billing for multi-system disease that touch multiple branches
- Simulation retained observed bundles of co-occurring outcomes

Results: All true effects null (Relative Risk (RR) = 1.0) Confounding away from null (+)

Percent of simulated datasets with false alerts

Results: Take-home points

When we simulated a true effect of exposure in 3 selected nodes, co-occurring outcomes in non-descendant nodes alerted - clinically related condition?

- Example: true RR = 4.0, no confounding
- 52% of simulated datasets had alerts with p <0.01 in non-descendant nodes
 - Which nodes? (rolled up to level 3)

Nodes with simulated true effect:

- Hemorrhage, GI ulcer
- Acute cerebrovascular disease
- Acute and unspecified renal failure

Node	Percent	MLCCS Level 3
08.06.01	32.6	Respiratory failure
03.08.01	18.6	Hyposmolality
06.03.01	17.7	Hemiplegia
07.01.02	17.5	Hypertension with complications
03.08.05	13.7	Other fluid and electrolyte disorders
17.01.05	11.0	Shock
10.01.03	10.4	Chronic kidney disease
Other		

Strengths

- First evaluation of the unconditional Bernoulli TreeScan statistic to screen for unknown adverse events when used with a PS matched cohort design
- 2. Simulations retained the complexity of observed baseline covariates and "bundles" of observed outcomes within individuals

Limitations

- 1. Plasmode simulation based on one observational cohort
 - -Baseline covariate correlation will differ in other cohorts
- 2. Evaluation only used MLCCS hierarchical tree
 - Primarily organ based
 - -Other trees may have different properties
- 3. Did not address how to select covariates for PS
 - Difficult to identify risk factors for all outcomes
 - -General frailty based or empirical PS may provide broad coverage

Discussion

- TreeScan with PS matching shows promise as a method for hypothesis free screening and prioritization of potential areas to pursue deeper investigation
- Should be followed with further evaluation:
 - Patient Episode Profile Retrieval (PEPR) to better understand the clinical context around potential signals
 - Targeted study to generate valid and precise estimates of effect for potential signals (confounding control tailored to specific outcome)

This work was published in Epidemiology, Aug 2018

swang1@bwh.harvard.edu