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1. EXECUTIVE SUMMARY  

This report describes a framework for assessment of signal refinement positive results.  “Positive 
results” are defined to be when an association is detected between a medical product and an adverse 
outcome that exceeds a pre-specified threshold in the direction of increased risk. 

The principal goal was to determine if the excess risk can be explained by something other than a cause 
and effect relationship, such as information or selection bias, confounding, or any errors associated with 
the signal refinement results. 

This report addressed assessing signal refinement, which is the second of a three stage process (signal 
generation, signal refinement, signal evaluation) in medical product post-market safety surveillance. 

Descriptions and general recommendation regarding sources of systematic error are presented. It 
begins with an assessment of data validity.  This should be a regular activity before a safety signal 
occurs.  The emphasis should be on ruling out errors in the data that contributed to the signal.   

Sources of systematic error in medical product safety surveillance are information bias, selection bias, 
and confounding. Information bias is an error in measuring exposure, covariate, or outcome variables 
that result in different quality (accuracy) of information between comparison groups. Misclassification 
of categorical variables is a form of information bias.   

For the Sentinel System, medical product exposures would be measured within electronic healthcare 
databases.  Such data are an imperfect surrogate for actual biological exposures within individuals. Data 
sources that populate the electronic health databases are not originally created for research or public 
health purposes.  The sensitivity and positive predictive values of electronic diagnostic codes for 
outcome assessment can be as low.  It can be particularly challenging to identify outcomes when there 
are no specific diagnosis codes or the incident rate is very low and/or misdiagnosis occurs. 

Selection bias is a distortion in an effect estimate due to the manner in which the study sample is 
selected from the source population. To avoid case selection bias, the cases (outcomes) that contributed 
to a safety signal must represent cases in the source population.  For exposed groups, the exposure 
definition must be representative and realistic of the pertinent medical product users in the source 
population.  Selection bias can occur for completely unexposed comparison groups, when they differ in 
important health related characteristics compared to exposed groups. To mitigate this, comparison 
groups can be based on exposures to other similar (but not identical) medical products, i.e. “active 
comparators”. 

Fundamentally, confounding is a mixing or confusion of effects. The apparent effect of the exposure is 
distorted from the true effect of exposure due to the effects of other factors outside the causal pathway 
of the medical product-outcome pair of interest.  Medical products other than vaccines are generally 
given to treat existing health diseases and conditions. Usually, the patient has an indication for such 
treatment. Electronic medical databases usually do not have sufficient information to clearly define the 
indication. This “confounding-by-indication” is often a concern regarding the validity of a safety signal.  
Residual confounding can also occur when attempts to control known confounding are incomplete or 
other suspected confounders were unmeasured. 

Sensitivity analysis, now known as quantitative bias analysis, is a general set of analytic methods that 
can assess the potential impact of confounding (measured, unmeasured, unknown), and information 
and selection biases.  The goal of bias analysis is to quantify the influence of systematic error on a risk 
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estimate from an epidemiologic study.  Quantitative bias analysis can establish that a result is 
invalidated by systematic errors or show that a result is robust to systematic errors and thus provides 
confidence to public health policy makers. For quantitative bias analysis to be feasible, a sufficiently 
precise estimate must have been generated. Quantitative bias analysis adjusts a conventional risk 
estimate based on bias parameters that determine the direction and magnitude of adjustment.  The 
methods to generate and apply bias parameters vary from relatively simple analysis of a fixed value of a 
bias parameter to complex and comprehensive sets of several bias parameters and their probable 
ranges of values. 

Simple bias analysis is most feasible when the bias parameters are known with certainty at one single 
value. Unfortunately this is almost never the situation and the more sophisticated methods described 
are recommended. Multidimensional bias analysis should be the minimum level of sophistication when 
analyzing systematic error.  The more computationally intense probabilistic bias analysis or multiple 
biases modeling is recommended when the detail in the available data sources are sufficient.  The 
relatively long history of active vaccine safety surveillance in VSD, with its large quantity of detailed 
longitudinal data, would allow probabilistic bias analysis or perhaps multiple biases modeling to be 
feasible. Since active safety surveillance is less mature for the vastly more variable drug exposures, the 
level of sophistication performed in quantitative bias analysis would be partly determined by the 
particular drug-adverse event pair under investigation. That is, on a case-by-case basis within the 
resources allocated.  For the medical devices or blood products, unless there are detailed data from, for 
example, an established registry with unique product identifiers, quantitative bias analyses might not be 
feasible. 

Overall, for signal refinement, quantitative bias analysis would be most useful in determining the 
maximum amount of systematic error that could be tolerated without obviating the signal. Subsequent 
signal evaluation might proceed differently if a relatively small amount of confounding, misclassification, 
or selection bias could overwhelm the signal versus if the signal is robust against a substantial amount of 
systematic error. 

Each type of medical product has specific issues related to signal refinement. Cofounding-by-indication 
is a common issue for observational safety studies of drugs, medical devices, or blood products. Drug 
safety studies can be affected by channeling bias, concomitant drug exposures and uncertainties in 
exposure assessment. Vaccine safety studies must consider bias due to the healthy vaccine effect, 
confounding-by-contraindication, uncertainties in exposure time periods, seasonality, and multiple 
vaccines or combination vaccines.  Medical device currently lack of a unique product identifier, leading 
to uncertainties in exposure assessments. Devices also have specific issues of product 
similarities/differences, human environment factors, and drug-device or device-device interactions.   

A process for assessing signal refinement results should proceed in a series of steps.  Once it has been 
established that a positive signal was detected, the most expedient next step is to review data validity, 
descriptive statistics, and analytic computer programs.  If the positive signal still persists after this step, 
then additional secondary analyses should be considered.  Patterns in time from the exposure to 
adverse event outcome should be examined. This could proceed via graphical methods and/or temporal 
scan statistics. If the graph or temporal scan statistical test indicates temporal clustering of outcomes 
after exposure, the risk window can be narrowed to include only this period and the analyses repeated, 
which would tend to result in higher relative risk estimates.  

If the examination of descriptive statistics reveals possible confounders that might not have been 
adequately controlled for, these should be dealt with by applying standard pharmacoepidemiologic 
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methods such as multi-variable regression to the same dataset. Such analyses might include finer 
adjustment for age, adjustment for seasonal trends by month or by use of sinusoidal curves, adjustment 
for secular trends using a linear or other function, adjustment for chronic diseases or propensity to 
receive the drug or product of interest, and adjustment for one or more specific simultaneous exposures 
such as another drug or vaccine. 

Another secondary analysis could be to use different comparison groups than in the original analysis, for 
example, historical comparison groups from different periods, concurrent controls that are selected or 
matched based on different criteria, and different control periods in self-controlled designs. 

If after the previous steps, the positive signal still generated an estimate of reasonable precision, then 
quantitative bias analysis may be feasible.  The objective is to determine the maximum amount of 
systematic error that could be tolerated without obviating the signal.  

If quantitative bias analysis is properly performed, then the possible impact of misclassification, 
selection bias, and confounding will be assessed. The challenge is to accurately model the most relevant 
biases for the specific medical product and outcome pairs of interest.  The particular medical product, 
adverse event outcome, surveillance database and the judgment of the investigators all influence the 
choice and performance of quantitative bias analysis methods. 

The interpretation and reporting of the signal assessment activity should be based on the protocol and 
the findings. The report should generally reflect if and where the excess positive risk could be explained 
by something other than a cause and effect relationship, such as data or systematic errors (information 
or selection bias, confounding). The report should be written in the order of the assessment steps done 
as described in the previous sections. If the assessment included a quantitative bias analysis, then 
details of the analysis should be described. 

2. INTRODUCTION 

2.1 OBJECTIVE 

The workgroup objective was to develop a framework for assessment of signal refinement positive 
results.  “Positive results” are defined as when an association is detected between a medical product 
and an adverse outcome that exceeds a pre-specified threshold in the direction of increased risk. 

2.2 SCOPE 

The principal goal was to determine if the excess risk can be explained by something other than a cause 
and effect relationship, such as information or selection bias, confounding, or any errors associated with 
the signal refinement results. In general, the determination will be whether the exposure-outcome 
relationship appears to exist in its originating data source. The scope of this project did not extend to 
replication in other sources, to a determination of causality, dose-response relationships, or other 
aspects of the relationship which typically require more detailed epidemiologic analysis.  

This report addressed assessing signal refinement, which is the second of a three stage process in 
medical product post-market safety surveillance (  Figure 1).  Signal refinement is the initial focus of 
Mini-Sentinel1, and is defined as “the assessment of predefined exposure outcome pairs to determine 
whether there is evidence of association.” 2  
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  Figure 1. Stages of Medical Product Post-market Safety Surveillance 

Previous reports from the Mini-Sentinel Methods Core, focusing on various aspects of signal refinement, 
were implicitly (or sometimes explicitly) based on good accepted principles of statistics and 
epidemiology and state-of-the-art techniques.3-7  Thus, signal refinement, especially as conducted via 
active surveillance, should be considered an epidemiologic and statistical activity.  The Centers for 
Disease Control and Prevention (CDC)  sponsored Vaccine Safety Datalink (VSD) has several years’ 
experience in conducting active surveillance of vaccines, and considers it an essential epidemiologic 
activity.8,9 

Previous work regarding signal refinement in the context of post-market surveillance has been most 
thoroughly assessed for vaccines8-10 and somewhat less so for drugs.11-13  It is relatively unknown for 
medical devices where prospective safety monitoring has been limited.14 

3. SOURCES OF SYSTEMATIC ERROR IN MEDICAL PRODUCT SAFETY SURVEILLANCE 

3.1 INFORMATION BIAS – MISCLASSIFICATION 

In the context of epidemiology, bias has been defined as “the systematic deviation of results or 
inferences from truth or processes leading to such deviation”.15 Bias is fixed with respect to sample size 
and is synonymous with systematic error. In contrast, the net effect of random errors approaches zero 
as the sample size increases. Bias can arise from measurement errors in the information gathered 
(information bias) or in errors of selection of the study sample from the source population (selection 
bias).   
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Information bias is an error in measuring exposure, covariate, or outcome variables that result in 
different quality (accuracy) of information between comparison groups.15  It is not necessarily 
independent of selection bias. Misclassification of categorical variables is a form of information bias.  

3.1.1 Exposure misclassification 

For the Sentinel System, medical product exposures would be measured within electronic healthcare 
databases.  Such data are an imperfect surrogate for actual biological exposures within individuals.16  
How exposures are practically assessed and the impact of misclassification depends on the particular 
medical product type, for example, a chronic intermittent drug exposure, an acute vaccine exposure, or 
a chronic continuous exposure from an implanted medical device.  Details on the uncertainties of 
exposure assessment are in section 5, Specific Product Considerations.  

3.1.2 Non-differential vs. differential misclassification and the direction of bias 

If the exposure misclassification does not depend on the values of other variables (including case 
status), then it is non-differential.  Only when the exposure is accurately modeled as dichotomous and 
the misclassification is independent of other errors, among other assumptions, is the bias of effect only 
in the direction of the null, i.e. the measured risk is diminished from the real risk. When the exposure 
misclassification is likely to differ by the value of other variables (mainly the outcome variable), it is 
differential, and the bias can affect the risk estimates either toward or away from the null. 

Recall bias can lead to differential misclassification of exposures.  For example, consider a case-control 
study of over-the-counter nonsteroidal anti-inflammatory drugs (NSAID) and gastrointestinal bleeding.  
Individuals identified as cases often will contemplate possible reasons for their symptoms. They may 
recall and be less likely to forget use of NSAIDs than controls.  More cases than controls would be 
classified as exposed due to the effects of recall bias, resulting in differential misclassification of 
exposure status. 

3.1.3 Outcome misclassification 

Data sources that populate the electronic health databases are not originally created for research or 
public health purposes.  The sensitivity and positive predictive values of electronic diagnostic codes for 
outcome assessment can be as low as 20%.17,18  It can be particularly challenging to identify outcomes 
when there are no specific diagnosis codes or the incident rate is very low and/or misdiagnosis occurs.  
Examples include Stevens-Johnson syndrome,18 newborn pulmonary hypertension19 or Churg-Strauss 
syndrome.20 

In general, many positive signals with risk ratios greater than 1.0 (i.e., an increased risk following 
exposure) are negated by medical record review because a large percentage of the electronically-
identified events do not represent incident disease.17,18  Instead, these electronically recorded events 
often represent follow-up visits for chronic (prevalent) conditions, miscoded diseases, or rule-out 
diagnoses. In other instances, the electronic diagnostic dates imprecisely measure the date of disease 
onset, which can shift an event from being classified as exposed to unexposed or vice versa. For these 
reasons, studies relying on automated data alone are associated with a high rate of false positive signals.  

The misclassification of automated data highlights additional limitations of safety screening and near-
real time surveillance. The data are initially analyzed as if the outcomes are perfectly measured, and it is 
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standard practice to validate only the positive associations with a medical record review. However, given 
the considerable misclassification of the automated data, it is possible that true positive associations are 
being overlooked. Statistical power calculations should have been performed to establish the lowest 
level of risk that could be detected for the particular safety study that is re-examined for validity. 

3.1.4 Methods to assess misclassification 

The statistical literature on methods to correct for misclassification and measurement error is vast. Such 
methods differ by theoretical approach, which can be parametric, semi-parametric or nonparametric.21 
Although differential error has been addressed in the literature,22 most methods have focused on 
correcting for non-differential error.21  Both Bayesian and frequentist approaches have been applied.  
The particular approach is often predicated on whether or not external validation data is available. 

A majority of the published methods for assessing misclassification bias assume no error in the response 
variable (outcome); they instead tend to focus on the impact of mismeasured exposures, confounders 
and other predictors of risk. Methods that do explicitly address misclassification of response variables 
are in the context of traditional hypothesis confirmation analyses, where the risk of a single outcome is 
modeled within a case-control or cohort framework. 

3.2 SELECTION BIAS 

Selection bias is a distortion in an effect estimate due to the manner in which the study sample is 
selected from the source population.23 Selection bias can be related to information bias,24 and can also 
have an impact on confounding.23  

3.2.1 Selection of cases  

To avoid case selection bias, the cases (outcomes) that contributed to a safety signal must represent 
cases in the source population.  Cases should meet a predefined case definition that may include 
electronic diagnostic codes, chronicity (acute or chronic) and medical setting (outpatient, inpatient). 
Exposure to a particular medical product is not necessarily in the case definition. Unexposed cases are 
needed in appropriate comparison groups, and ascertaining cases “blinded to exposure” helps avoid 
introducing information bias. 

3.2.2 Selection of exposed groups 

For exposed groups, the exposure definition must be representative and realistic of the pertinent 
medical product users in the source population.  Exposures to medical products should be defined as 
precisely as possible with respect to (but not limited to) duration of exposures, continuous or 
intermittent exposure periods, and whether medical products of similar therapeutic class are included.25 

3.2.3 Selection of comparison groups 

Even if cases or exposed groups are selected without bias, the inappropriate selection of controls or 
unexposed comparison groups introduces selection bias. Examples are provided below. 
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3.2.3.1 Exposure based comparison groups (unexposed to main exposure of interest) 

For exposure based analyses, as in cohort or self-control study designs, comparison groups should 
provide a valid outcome estimate free of exposures due to the medical product of interest.  Selection 
bias can be introduced if there were differential losses to follow-up between exposed and comparison 
groups.  

3.2.3.1.1 Completely unexposed comparison groups 

Selection bias can occur for completely unexposed comparison groups, when they differ in important 
health related characteristics compared to exposed groups. For example, in vaccine safety studies, 
completely unvaccinated individuals often have different follow-up times among other fundamental 
differences in morbidity, health behaviors, or other characteristics not otherwise captured in the 
available data. They may not be representative of members from the source population that could have 
been exposed to the specific medical product of interest but were otherwise not.  Moreover, unexposed 
groups may not be “completely unexposed” if the “look back” time for prior exposures is too short 
relative to an index date. 

For medical device studies, it is sometimes difficult to have completely unexposed comparison groups 
from a similar source population. Many devices are implanted among patients who have severe disease 
progression where other medical treatments have failed.26 The device may be the only option or in 
some cases such as cardiac catheterization the only choice and it would be unethical to have a 
completely unexposed group.  

3.2.3.1.2 Active comparator groups 

To mitigate this selection bias, comparison groups can be based on exposures to other similar (but not 
identical) medical products, i.e. “active comparators”.  This is often used in drug or device efficacy or 
safety studies, where the adverse event risk from users of a new drug is compared to the risk from users 
of an established “standard-of-care” drug.  Both drugs (and devices) should have been prescribed for the 
same indication within the population under study.  

Active comparator controlled studies can have specific challenges. Often MCO formularies and 
treatment guidelines determine which drugs are considered for primary and secondary use.  These are 
generally drugs with a longer history of use and better known efficacy and safety profile and often are 
drugs available as lower cost generic formulations. Drugs newer to the market are often only available 
as a single branded product and are generally more expensive. They may be relegated to tertiary use as 
a covered drug in the pharmacy benefit package only when primary and secondary agents fail to deliver 
effective treatment. For some clinical indications, only expensive products are available. In both these 
situations, economic factors can force patients who cannot afford particular drugs to either be 
prescribed less than ideal drugs, cut pills to extend drug supply, or avoid treatment altogether by leaving 
prescriptions unfilled.27 These factors can be difficult to assess in claims data and can make valid 
comparisons particularly challenging. 

3.2.3.1.3 Temporal comparison groups 

The relative timing between members of a comparison group to members of the exposed group can also 
be a factor in selection bias. 
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In concurrent controls, members can be matched to exposed members based on calendar time and 
other covariates deemed important for the particular medical product-outcome pair under surveillance.  
This is efficient for near-real time safety surveillance, where a relative risk can be rapidly estimated 
without needing statistical adjustment from regression modeling.  However, if the outcomes are 
particularly rare, a stable rate in a concurrent comparison group might not be possible.  

The use of historical comparison groups is an alternative.  Instead of individual level matching, estimated 
background rates are stratified by predetermined covariate groupings. Rates may have to be generated 
from data that predates by several years the occurrence of the exposures of interest.  A selection bias 
could be introduced if the historical rates are not representative of what a true unexposed rate would 
be during the time of the exposures. 

3.2.3.2 Self-controls 

In self-control study designs, cases serve as their own controls. The comparison is based on whether the 
case occurred during an exposed time period versus an unexposed time.  By definition there cannot be a 
selection bias due to “control group selection”. However, studies that use self-controls work best for 
acute exposures and acute outcomes with prompt onset such as in most vaccine safety studies and 
where time-varying confounders do not exist.  Another limitation is an issue of information bias if there 
is misclassification as to how exposed and/or unexposed time periods were assigned. 

3.2.3.3 Outcome based comparison groups (non-case controls in case-control studies) 

Controls based on lack of the outcome of interest (non-cases) imply a case-control study setting. 
Controls as non-cases must be as representative of the underlying study population as cases. However, 
case-control studies can be particularly vulnerable to selection biases and confounding. In this era of 
large longitudinal electronic health care databases, case-control studies are not necessarily an efficient 
and economical alternative to cohort studies.28 

3.2.3.4 Methods to assess selection bias 

Since the origin of selection bias is essentially in the study design phase, it cannot be corrected by 
statistical analysis alone.17 Selection bias can also be described graphically in the context of causal 
diagrams. 29  These diagrams show that it is sometimes possible to disentangle the effects of selection 
bias if the determinants of participation are accurately known. A relatively simple example is for an odds 
ratio as calculated from a 2x2 table of case/noncase versus exposed/unexposed. If the selection 
probabilities are known for each of the 4 cells, then the odds ratio is multiplied by a ratio defined by the 
4 selection probabilities.30 Unfortunately it is almost never known what the true selection probabilities 
were, as partitioned among all states of outcome status, exposures, and other important covariates. 

Probabilistic bias analysis, described in the subsequent Quantitative Bias Analysis section, can address 
the extent of how selection bias might impact findings from a study.30,31 This method is based on Monte 
Carlo sampling of plausible distributions of selection probability bias parameters. 
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3.3 CONFOUNDING 

Fundamentally, confounding is a mixing or confusion of effects. The apparent effect of the exposure is 
distorted from the true effect of exposure due to the effects of other factors outside the causal pathway 
of the medical product-outcome pair of interest.32 

3.3.1 Confounding by indication 

Medical products other than vaccines are generally given to treat existing health diseases and 
conditions. Usually, the patient has an indication for such treatment. Electronic medical databases 
usually do not have sufficient information to clearly define the indication. This “confounding-by-
indication” is often a concern regarding the validity of a safety signal.  Confounding-by-indication arises 
where the treatment is a marker for a medical condition that serves as the “indication” for using the 
treatment, and at the same time that medical condition increases (or possibly decreases) the risk of the 
outcome of interest. In contrast, vaccines are given to a generally healthy population and confounding 
by contra-indication can be present (for some drug safety analyses too).  

3.3.2 Measured confounders 

Other factors than indication can confound the true association of a medical product-outcome pair of 
interest. Some of these factors such as demographics and coded comorbidities are captured in 
electronic health care databases. Others such as socio-economic factors and health related behaviors 
may not be.  Often there are many covariates in a database that could be constructed into a possible 
measured confounder. Examples are disease risk scores or exposure propensity scores.18 

3.3.3 Residual, unmeasured, and unknown confounding 

Residual confounding can occur when attempts to control known confounding are incomplete or other 
suspected confounders were unmeasured.33 Known confounders may have been improperly 
constructed from covariates in the data, especially if categorized from continuous measures.  The 
categories may have been too broad. Another reason is that a covariate may poorly represent a possible 
confounding factor.  For example, census tracts may or may not adequately control for possible 
confounding from economic factors. Covariates that represent confounders may also have 
measurement errors. Levels of confounding factors may be misclassified into the wrong exposure or 
outcome groups. Even if important confounders were well measured, but they were not included in the 
final multivariate risk models, they will strongly contribute to residual confounding.  

Another kind of residual confounding is unmeasured confounding.  This originates from known 
confounding factors that were not captured in the data. For example, frailty in the elderly was a known 
confounder in some drug safety studies but measures of frailty are not usually captured in health claims 
data.34  Other possible confounders not always measured well in such data are exercise level, smoking 
or alcohol use status, diet or family health history. 

Perhaps the most problematic is when a possible confounding factor is unknown to not only the 
investigator, but to the larger scientific community.35 Possible unknown confounding is suspected when 
a new observed association of an exposure and outcome is considered counter-intuitive. An interesting 
example is the continuing scientific debate about the association of moderate alcohol consumption and 
lower risk of coronary heart disease and the possible effects of unknown confounders.36 
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3.3.4 Methods to assess and control confounding 

If confounders are known and measured, then there are several possible methods that can be 
considered. The first and simplest is restriction. 37Individuals are only included in a study if they have a 
single category or level of a confounding characteristic.  There can be no confounding if there is no 
variation in the confounding covariate in the study data. If sex is an important confounder in an 
association of exposure and outcome risk, then a study would only include either males or females, but 
not both.  

The second method is stratification on levels of the confounding covariate.38 Matching on confounding 
covariates between exposed and unexposed is a special case of stratification. Matching in cohort studies 
can be a way to reduce confounding effects but also can reduce statistical efficiency (wider confidence 
intervals). 

Multivariate adjustment in regression modeling is a third method of confounding assessment and 
control.  When regression modeling is performed correctly and important confounding covariates are 
included (and measured without error), then the risk estimate of the exposure of interest is “adjusted” 
and free of confounding. 

A fourth method for assessment and control of confounding is the use of propensity scores either by 
matching or stratification, or inverse probability weighting.39  Propensity scores are probabilities for 
exposure conditioned on various covariates (which are often important measured confounders). Each 
individual in a study has a specific nonzero propensity score, regardless of the actual 
exposed/unexposed status. By matching or stratifying on the exposure propensity score, the effects of 
measured confounders are eliminated or at least reduced. 

Finally, sensitivity analysis, now known as quantitative bias analysis, is a general set of analytic methods 
that can assess the potential impact of confounding (measured, unmeasured, unknown), and 
information and selection biases. 

4. QUANTITATIVE BIAS ANALYSIS 

The goal of bias analysis is to quantify the influence of systematic error on a risk estimate from an 
epidemiologic study.  Quantitative bias analysis can establish that a result is invalidated by systematic 
errors or show that a result is robust to systematic errors and thus provides confidence to public health 
policy makers.  The following described methods are based on the chapter “Bias Analysis” in Modern 
Epidemiology, 3rd edition42 and the textbook by Lash, et al., “Applying Quantitative Bias Analysis to 
Epidemiologic Data”.31  

For quantitative bias analysis to be feasible, a sufficiently precise estimate must have been generated. 
Note that this is not determined by “statistical significance”, rather, that the confidence interval of the 
estimate is narrow enough such that bias and confounding analyses are feasible. Consider two example 
risk estimates.40  The first example is a relative risk (RR) and 95% confidence interval (CI)of 1.4 (0.80-2.4) 
with p=0.2.  The width of the CI, based on the ratio of the upper and lower limits, is 3.  The second 
example is a “significant” RR of 4.1 (1.2-14), p=0.02. Here the width of CI is 11.7.  The first example is 
more feasible for quantitative bias analysis than the second because of its more precise CI. Ultimately, it 
is the investigators responsibility to judge whether quantitative bias analysis is necessary and feasible.  
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4.1 BIAS PARAMETERS 

Quantitative bias analysis adjusts a conventional risk estimate based on bias parameters that determine 
the direction and magnitude of adjustment. Table 1 shows examples of bias parameters for outcome 
misclassification, selection bias, and unmeasured confounding.  

 
Table 1. Examples of bias parameters for quantitative bias analysis.  RRtrue is the true relative risk, RRobs is 
the observed biased relative risk, and M is a function of the bias parameters that expresses magnitude and 
direction of the bias. 

Misclassification of the Outcome 
Se1 =  sensitivity among exposed, Sp0 = specificity among exposed,  
Se2 = sensitivity among unexposed, Sp0 = specificity among unexposed 
Mmc = function of (Se1, Sp1, Se0, Sp0),  RRobs=Mmc x RRtrue 
If all the sensitivities and specificities equal 1 then there is no bias from misclassification.  RRobs=RRtrue 
if there are no other biases present. 
 

Selection Bias 
Sc1 =probability of selecting exposed study cases from the population of all exposed cases 
Sc0= probability of selecting unexposed study cases from the population of all unexposed cases 
Sn1 =probability of selecting exposed study noncases from the population of all exposed noncases 
Sn0= probability of selecting unexposed study noncases from the population of all unexposed noncases 
Msb = function of (Sc1, Sc0, Sn1, Sn0),  RRobs=Msb x RRtrue 
If all the selection probabilities are equal then there is no selection bias.  RRobs=RRtrue if there are no 
other biases present. 

Unmeasured Confounder 
RRco =relative risk associated with the confounder and outcome 
Pc1=prevalence of the confounder among exposed 
Pc0= prevalence of the confounder among unexposed 
Muc = function of (RRco, Pc1, Pc0),  RRobs=Muc x RRtrue 
If Pc1=Pc0 or RRco=1  then there is no unmeasured confounding. RRobs= RRtrue, if there are no other 
biases present. 
 

 

The methods to generate and apply bias parameters vary from relatively simple analysis of a fixed value 
of a bias parameter to complex and comprehensive sets of several bias parameters and their probable 
ranges of values. 

4.2 SIMPLE BIAS ANALYSIS 

In simple bias analysis, one fixed value is assigned to each bias parameter.  The bias parameters are 
analyzed one at a time and a single revised estimate of association of risk is presented.  Simple bias 
analysis is computationally simple and straightforward; however it does not incorporate the joint effect 
of random error.  
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For example, for an initially electronically assessed outcome in a case-control study, misclassification of 
the odds ratio can be accomplished by generating positive (negative) predictive values  from secondary 
data such as medical chart review.  The correction factor for disease misclassification is 1/[PPV+NPV-1), 
here PPV (NPV) are the positive (negative) predictive values of the outcome.41 

4.3 MULTIDIMENSIONAL BIAS ANALYSIS 

Multidimensional bias analysis is similar to simple bias analysis, except that more than one value is 
assigned to each bias parameter.  Bias parameters are also analyzed one at a time.  Multidimensional 
bias analysis yields a set of corrected estimates, but not a real frequency distribution.  As in simple bias 
analysis, this method is computationally simple and also does not include the effect of random error. 

4.4 PROBABILISTIC BIAS ANALYSIS 

Probabilistic bias analysis is a further progression in sophistication compared to multidimensional bias 
analysis.  It begins with assigning probability distributions to the bias parameters; however bias 
parameters are still analyzed one at a time.  Monte Carlo methods are used to repeatedly sample from 
the probability distributions and to correct for the bias.  The main advantage of probabilistic bias 
analysis is that a frequency distribution of revised risk estimates are produced that also incorporate 
random error.  The mean of the distribution and its 95% simulation interval can be interpreted similarly 
to a conventional point estimate and its confidence interval.  While probabilistic bias analysis has these 
desirable properties over the previous simpler methods, it is computationally more intense.  The general 
procedure for conducting probabilistic bias analysis is shown in Table 2.  Examples of probabilistic bias 
analysis are also presented in Appendix A. 

 

Table 2. Probabilistic bias analysis procedure 

1. Identify likely sources of important bias and bias parameters 

2. Assign probability distributions to each bias parameter 

3. Randomly sample from each bias parameter distribution 

4. Use simple bias analysis to correct for the bias 

5. Save corrected estimates and repeat steps 3 and 4 

6. Summarize the corrected estimates with a frequency distribution that 
yields a central tendency and simulation interval 

Adapted from Lash TL, Fox MP, Fink AK.  Applying Quantitative Bias Analysis to 
Epidemiologic Data. New York: Springer. 2009, p 132 

 

4.5 SUMMARY DATA VS. RECORD LEVEL CORRECTIONS 

Simple and multidimensional bias analyses are performed on estimates of association and summary 
data—typical of what is reported in text and tables in published manuscripts.  Probabilistic bias analysis 
was first developed via simulating corrections to record level data.42,43  This allows direct regression 
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modeling (with appropriate multiple imputation techniques) and subsequent estimation of confidence 
intervals that incorporate both random and systematic error.  The major limitation of record level 
corrections is the computer programming expertise and resources required. Recently, methods have 
been developed to perform probabilistic bias analyses on summary data that combines random and 
systematic errors.44 

4.6 MULTIPLE BIASES MODELING 

The most sophisticated and comprehensive quantitative bias analysis is multiple biases modeling.45 
Probability distributions are assigned to bias parameters and several bias parameters analyzed at once.  
Information bias, selection bias, and confounding are usually modeled in order with additional random 
error. A frequency distribution of revised risk estimates is produced and its mean and its 95% simulation 
interval are interpreted as for conventional estimates.  Multiple biases modeling is the most 
computationally intense method of bias analysis and is performed at the record level of data.   

4.7 GENERAL RECOMMENDATIONS FOR QUANTITATIVE BIAS ANALYSIS 

Simple bias analysis is most feasible when the bias parameters are known with certainty at one single 
value. Unfortunately this is almost never the situation and the more sophisticated methods described 
are recommended. Multidimensional bias analysis should be the minimum level of sophistication when 
analyzing systematic error.  The more computationally intense probabilistic bias analysis or multiple 
biases modeling is recommended when the detail in the available data sources are sufficient.  The 
relatively long history of active vaccine safety surveillance in VSD, with its large quantity of detailed 
longitudinal data, would allow probabilistic bias analysis or perhaps multiple biases modeling to be 
feasible. Since active safety surveillance is less mature for the vastly more variable drug exposures, the 
level of sophistication performed in quantitative bias analysis would be partly determined by the 
particular drug-adverse event pair under investigation. That is, on a case-by-case basis within the 
resources allocated.  For the medical devices or blood products, unless there are detailed data from, for 
example, an established registry with unique product identifiers, quantitative bias analyses might not be 
feasible. 

Overall, for signal refinement, quantitative bias analysis would be most useful in determining the 
maximum amount of systematic error that could be tolerated without obviating the signal. Subsequent 
signal evaluation might proceed differently if a relatively small amount of confounding, misclassification, 
or selection bias could overwhelm the signal versus if the signal is robust against a substantial amount of 
systematic error. 

5. SPECIFIC PRODUCT CONSIDERATIONS  

5.1 DRUGS 

5.1.1 Post-approval drug safety surveillance 

Post-marketing drug safety surveillance is a core component of how the US Food and Drug 
Administration (FDA) protects and promotes public health.1  In the past the FDA has had to rely on 
spontaneous reporting systems such as the Adverse Event Reporting System (AERS)46, as one 
surveillance component, to monitor drug product safety post-marketing. Spontaneous reporting 
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systems depend on voluntary reports of adverse events and quality problems from healthcare 
practitioners and patients. Voluntary reporting is subject to both underreporting and incomplete 
reporting and, while spontaneous reports provide numerator data (number of outcomes), no 
denominator data (number of exposures) is provided. Thus, from spontaneous reporting, the rate of an 
adverse outcome cannot be determined within the context of an overall population of exposed and 
unexposed individuals. Recently, as a result of provisions within the FDA Amendments Act of 2007, FDA 
has embarked on the Sentinel Initiative. Once fully operational, the Sentinel Initiative will provide active 
surveillance capabilities that complement and supplement spontaneous reporting and provide 
population-based denominator (as well as numerator) data to assess outcomes. This Initiative is 
currently under development (between 2009 and 2014), with this developmental, pilot phase known as 
Mini-Sentinel. The infrastructure necessary to provide population-based numerator and denominator 
data is being implemented using health care information collected in the process of patient care as well 
as insurance claims data from data partners that are voluntarily participating. These administrative and 
clinical health care data are being extracted, transformed, and loaded into a distributed data system 
common model (the Mini-Sentinel Common Data Model or MSCDM). The MSCDM will enable the FDA to 
monitor the safety of drugs (and other regulated medical products) under conditions of actual use in the 
US. Post-approval drug product safety surveillance within the Sentinel Initiative program is initially 
focusing on signal refinement (further investigating an identified safety signal) to determine whether 
evidence exists to support a relationship between the exposure and the outcome.  

5.1.2 Issues specific to drugs 

5.1.2.1 Confounding by indication 

Drug safety studies are often “confounded by indication.” As mentioned previously, drugs are generally 
given to prevent disease or to treat existing conditions, and electronic medical databases usually do not 
have sufficient information to clearly define the indication. Numerous strategies have been explored to 
control for confounding in observational pharmacoepidemiology. Strategies to control for confounding-
by-indication can be thought of as two types, those that adjust for known confounders and those that 
adjust for unknown confounders. The latter also often adjust for known confounders, but usually include 
additional assumptions or restrictions to generalizability.47  Strategies to handle measured confounders 
include restriction and matching in the design phase, and standardization, stratification, multivariate 
regression (including propensity scores and disease risk scores) and marginal structural models in the 
analytic phase.47  Strategies to handle unmeasured confounders include two-stage sampling and 
external adjustment for confounders that might be measurable in a separate study. For truly 
unmeasurable confounders, case only or crossover study designs, instrumental variables, and sensitivity 
analysis may be useful.47 Exposure based propensity scores or instrumental variables (if they exist) have 
shown some utility in at least partially controlling for confounding by indication. Restricting the study 
population to those with a clearer indication for the specific drugs under investigation works well, but at 
the expense of generalizing the interpretation of results.  

5.1.2.2 Channeling bias 

Channeling occurs when drugs with similar therapeutic indications are prescribed to groups of patients 
with prognostic differences.48 Channeling is sometimes thought of as a subtype of confounding by 
indication in that claimed advantages of a new drug may direct (channel) the drug towards use in highly 
selected patient subgroups. The consequence can be that higher adverse event or lower efficacy rates 
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than expected are observed and are incorrectly attributed to the drug. For example, a newly-marketed 
drug for rheumatoid arthritis may be initially prescribed only to the subgroup of patients who have the 
most severe disease, who did not achieve remission or disease modification with previously-marketed 
drugs, or who experienced adverse reactions to older drugs. Channeling bias can at times be identified 
when large healthcare databases provide information on prior and concurrent dispensings of other 
medications and on patient comorbidity or disease duration. 

5.1.2.3 Sources of uncertainty in drug exposure 

Electronic pharmacy dispensing records are the prime data source for post-market active safety 
surveillance of drugs.49 For example, the Mini-Sentinel Common Data Model (MSCDM) Dispensing file 
contains information typically found in electronic pharmacy records sourced from managed care 
organizations (MCOs), large health insurance carriers, and government insurance programs such as 
Medicare.  These variables include person-level identifiers, drug dispense date, amount dispensed, days 
supply, and the National Drug Code (NDC) which identifies the particular drug, specific strength, dosage 
and  package forms and sizes. 

However drug dispensing data have limitations that can have an impact on drug exposure 
misclassification.  Pharmacy databases usually contain outpatient drug dispensing information, obtained 
either from pharmacy insurance claims or from actual drugs dispensed at pharmacies within an 
integrated health care delivery system. Moreover, the actual prescribed dose regimen is usually not 
captured and must be inferred from other variables. In addition, drugs administered during an inpatient 
stay are usually not available from pharmacy insurance claims databases and are only sometimes 
available from MCOs electronic health records databases. Therefore, drugs administered during an 
inpatient hospitalization often represent missing data and consequently the potential for 
misclassification as unexposed. Another important limitation is that drug dispensing information 
available from these databases only indicates that the patient had the medication in his/her possession, 
but not whether the patient actually took the drug or took it at the recommended dosage and 
frequency. Thus, patient adherence to the prescribed regimen can only be inferred from the variables 
available within these databases.50 Finally, the pharmacodynamics and pharmacokinetics of the drug 
must always be considered when estimating drug exposure and the potential for misclassification as 
when the risk period begins and ends is in large part determined by these pharmacological 
considerations. Drug exposure patterns can be acute or chronic with short- or longer-term, sporadic, 
intermittent, or continuous characteristics. Thus, with drugs, both exposure and outcome can be time-
varying.51,52 As Faich and Stadel observed over two decades ago, “unless you observe the patient 
swallowing the drug and monitor the body drug concentrations, drug exposure must always be 
considered as measured approximately.” 53 

Uncertainties in measuring and understanding patterns of drug exposure can broadly be categorized as 
associated with patient, provider, system, and drug characteristics as well as drug exposure time 
patterns. Some of these were discussed above. Patient-related characteristics that can contribute 
uncertainty include demographics and socioeconomic status (e.g., younger aged adults often have 
poorer medication adherence than do older adults), health status/co-morbidities (e.g., smoking can be a 
marker for risky health behaviors), severity of disease, and adherence to or persistence with drug 
therapy (e.g., if a patient’s adherence is considered to be 70%, it cannot be confirmed whether the non-
adherent days were evenly spaced throughout the refill period, all occurred within the initial portion of 
the refill period, or all occurred at the end of the period). Provider/prescriber characteristics that 



 
 
 
 

Mini-Sentinel Methods: Framework for Assessment of Signal Refinement Positive Results - 16 - 

contribute to lack of clarity in drug exposure can include for example, interviewing skills, completeness 
of documentation in the medical record, and even prescribing preferences (e.g., preferring to prescribe 
new drugs as they become available versus preferring to prescribe older established drugs with known 
safety profiles). System characteristics that may foster uncertainty include the use of paper versus 
electronic medical records (e.g., paper records or radiology films may be destroyed after a certain date), 
drug benefit and health care utilization co-payment structures (e.g., high drug copayments can be 
associated with poorer medication adherence), and poor access to pharmacies (e.g., no transportation 
to obtain refills of medication). Finally, drug characteristics and exposure patterns that are sources of 
uncertainty include prescribing (e.g., paper prescriptions versus electronic prescription order entry), 
dispensing (e.g., no electronic documentation of provision of medication samples), medication 
adherence, cumulative dose, the pharmacodynamics (duration and pattern or adverse event risk 
window) and pharmacokinetics of the drug, concomitant medications including both the number of 
unique medications and the types of unique medications, and drug switching patterns. 

5.1.2.4 Defining the appropriate risk window for assessing risk of the outcome  

Choosing the appropriate risk window implies that the correct period of increased risk of outcome 
following exposure has been identified. Ideally, this time window includes the full period of potential 
excess risk, that is, the duration of both drug intake and of the pathogenic process that results in 
development of clinically manifest events. In reality, the usual process for identifying the “risk” window 
is more aligned with identifying dispensings of the drug of interest, the duration of “exposure” based on 
days of drug supplied to the patient across one or more refill intervals, the dosage and dosing interval, 
and a surrogate measure of medication adherence (often identified from the information available 
within the pharmacy dispensing or claims database). Consequences of incorrect risk window 
measurement can be dire, in that cohort studies where lifetime exposure history includes pertinent 
exposure and irrelevant time can fail to discover effects with short or transient risk periods and case-
control studies with too wide time window include time outside the true risk window yielding study 
results that differ greatly from study results obtained using narrowly-defined time windows. Over- or 
underestimation of duration of risk often results in bias towards the null. Conversely, the best estimate 
of risk duration is the one that maximizes the relative risk estimate. These points are exemplified in 
published studies that have conflicting results. 

Transient or time-varying adverse event risk is the most common type of outcome window with drug 
exposures. Transient risk windows are characterized by a period of normal (background) risk and periods 
of excess risk and reduced risk. In fact, with drug exposures, adverse event risk that is constant over 
time is rare. A classic example of time-varying risks associated with drugs include diethylstilbestrol (DES) 
and adenocarcinoma of the vagina54 where the overall risk across the lifetime among women exposed in 
utero approximates 1 per 10 million person-years, but the risk for these women between ages 20 to 30 
years is 1 per 10 thousand person-years. Other examples include anaphylaxis associated with penicillin 
(risk window is minutes after exposure), hospitalization for peptic ulcer disease associated with NSAIDs 
(risk is highest in first 30 days after exposure),55 and angioedema with angiotensin converting enzyme 
inhibitors 56(risk is logarithmically higher in the first week of exposure). Other types of risk windows that 
occasionally are important include delayed onset where the risk begins after some defined period of 
drug exposure, and carry over windows where there is a period of persisting risk (i.e., delayed recovery 
from risk) after discontinuing the medication. The length of time the adverse event risk persists can 
range from days (e.g., NSAIDs and gastrointestinal hemorrhage; acetaminophen and drug-induced liver 
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disease) to weeks (e.g., phenytoin and drug-induced liver disease) to months or even years (e.g., 
isotretinoin and birth defects).  

5.2 VACCINES 

5.2.1 Post-approval vaccine safety surveillance 

In 1990, two federally funded programs, the Vaccine Adverse Event Reporting System (VAERS) and the 
Vaccine Safety Datalink (VSD) were established to support vaccine safety surveillance. The Centers for 
Disease Control and Prevention (CDC) and Food and Drug Administration (FDA) jointly administer 
VAERS.11  VAERS is a passive surveillance system that accepts reports of possible adverse events 
following immunization (AEFI) from the vaccine manufacturing industry, health professionals and the 
public. While there are no restrictions on reporting possible AEFIs, reporting bias and lack of 
denominator data limit VAERS from being used to establish causation. 

VSD is a collaborative project between the CDC and several managed care organizations (MCOs) across 
the United States.8 The participating MCOs comprise a population of over 10 million members annually 
(~3% US population). VSD conducts both retrospective and near-real time population–based vaccine 
safety studies.  Retrospective observational studies test hypothesis from the medical literature, VAERS, 
and public concern, or generate hypotheses from large cohorts of vaccinated individuals that are 
screened for several medically-attended events following vaccination. For near-real time safety 
surveillance of newly approved vaccines, a Rapid Cycle Analysis (RCA) team creates weekly analytic data 
sets, creates study cohorts, and analyzes them with appropriate statistical methods.9  

The federally funded Post-Licensure Rapid Immunization Safety Monitoring (PRISM) program began in 
2009 for monitoring the safety of the H1N1 influenza vaccine.57 PRISM now monitors the largest US 
general population cohort (~ 10% of US) for active safety surveillance of several vaccines. PRISM is based 
on data from national health insurance plans and state and city immunization registries and is now part 
of the Mini-Sentinel program.  PRISM data are updated quarterly and medical record review can be 
accomplished.  

5.2.2 Issues specific to vaccines 

5.2.2.1 Vaccine exposure misclassification 

Vaccines are acute exposures, usually administered during medical office visits, on a predetermined 
schedule. Some vaccine administrations occur in retail pharmacy (e.g., influenza and zoster vaccines) or 
emergency department (e.g., tetanus vaccine) settings. The data in electronic vaccine registry databases 
are generally considered of high quality.58 The main source of possible exposure misclassification is 
uncertainties in the risk window length. If the risk window following vaccination is too long, then a 
portion of unexposed time may be classified as exposed, if too short, then the opposite may occur.  
Usually a risk window length, typically in the range of 3 days to 2 months is specified from what is known 
from previous safety studies and/or biologic plausibility. Data driven approaches currently being 
investigated show some utility in quantitative risk window determinations.59 

5.2.2.1 Healthy vaccinee effect 

The healthy vaccinee effect is a postulated selection bias in which vaccinated individuals are less likely to 
have had a visit to a medical provider due to a serious illness in the days preceding vaccination.60 The 
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corollary is that vaccination is deferred among those who are acutely ill.61  The time of vaccination is in 
one of the healthier periods, as measured by the use of health services data.  

5.2.2.2 Confounding by contra-indication 

Confounding by contra-indication can occur if unvaccinated individuals are used as a comparison group. 
Contraindicated individuals often have medical conditions that result in higher morbidity (or ultimately 
mortality) than in the general population. Fine and Chen62 in 1992 showed that earlier studies of 
diphtheria, tetanus, and (whole-cell) pertussis (DTP) vaccine and sudden infant death syndrome or 
encephalopathy had likely underestimated the risk due to confounding by indication. However, 
established contraindications to a specific vaccine are relatively rare in pediatric vaccine safety studies, 
as they are usually related to rare congenital conditions.63   

5.2.2.3 Seasonality 

Disentangling the effects of a seasonally occurring adverse event from a vaccine administered one 
during specific seasons is particularly problematic.  For example, over 85% of influenza vaccines are 
given in October or November in any particular year.64  Many of the adverse events, such as febrile 
seizures, also have high incidence during these months. No analytic methods are completely effective in 
controlling for this seasonal cofounding in some vaccine safety studies.65 

5.2.2.4 Multiple vaccines and combination vaccines 

In the US, pediatric vaccinations are administered to most children according to recommended 
schedules.66  There are now up to 11 vaccines given in the first year of life to protect against 15 vaccine 
preventable diseases. Increasingly, vaccines are being combined into one administered shot, for 
example, diphtheria, tetanus, acellular pertussis, inactivated poliovirus, and Haemophilus influenzae 
type B combination vaccine (DTaP-IPV-Hib). 

When multiple and combination vaccinations are administered simultaneously, determining whether 
events are attributable to particular components or one of several combinations is frequently difficult or 
impossible.64,65  

5.3 DEVICES 

Devices are a very broad and diverse group of medical products that primarily function by means other 
than chemical or being metabolized in humans or animals.14  A detailed legal definition of “device” is in 
section 201(h) of the Federal Food Drug & Cosmetic (FD&C) Act: 

“an instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or 
related article, including any component, part, or accessory, which is—(1) recognized in the official 
National Formulary, or the United States Pharmacopeia, or any supplement to them, (2) intended for use 
in the diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or prevention of 
disease, in man or other animals, or (3) intended to affect the structure or any function of the body of 
man or other animals, and which does not achieve its primary intended purposes through chemical action 
within or on the body of man or other animals and which is not dependent upon being metabolized for 
the achievement of its primary intended purposes. “ 
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The FDA classifies medical devices into 3 categories according to the controls necessary to establish 
safety and effectiveness.67 Examples of Class I devices are disposable gloves, tongue depressors, and 
dental floss. Class I devices are considered to be low risk and have the least regulatory control. Class II 
devices, such as infusion pumps, surgical or acupuncture needles, have a greater risk and thus have a 
higher level of regulatory control.  Class III devices are the most complex, the most invasive, have the 
highest risk and the most control. Examples are artificial heart valves, implanted joints, and implanted 
defibrillators. 

5.3.1 Post-approval medical device safety surveillance 

Unlike other medical products, most medical devices are chronic implants and designed to provide a life-
time worth of benefits after they have failed more conservative treatments. Although many devices are 
approved to be marketed after thorough evaluation of clinical pre-market studies (PMAs), the safety and 
effectiveness of the device may deviate substantially from what was observed under the typically very 
controlled study conditions of short duration. Therefore, most information about the safety and 
effectiveness of a particular medical device is gained in the postmarket setting.  The FDA Center for 
Devices and Radiological Health (CDRH) has implemented several surveillance systems to monitor device 
safety post-marketing: 

The Manufacturer and User Facility Device Experience (MAUDE) database is the FDA’s mechanism for 
collecting all adverse events involving medical devices; it is a passive system which relies on 
spontaneous reports from patients, healthcare practitioners, distributors and manufactures.68 Much like 
AERS previously described, MAUDE is subject to underreporting, incomplete reporting and lack of 
denominator data. Dissimilar to AERS, however, MAUDE reports lack unique identifiers for the devices 
for which the event is being reported, making it difficult to identify the specific exposure.  

The Medical Product Safety Network (MedSun) is an adverse event reporting program launched in 2002 
which consists of a voluntary sample of over 350 hospitals and health care facilities.69 On site 
representatives report adverse medical events directly to the FDA. This system is still under 
development and currently functions most similar to a passive reporting system such as the MAUDE, 
along with the similar limitations. 

Apart from these passive systems, under 21 CFR 814.82 the FDA has the authority to impose post-
approval studies of Class III devices.  This is to continue evaluation and reporting on the safety, 
effectiveness and reliability of the device for its intended use. In addition, under Section 522, the FDA 
has the authority to order postmarket surveillance studies for Class II or Class III medical devices that 
meet the statutory criteria. These mandated studies aim to evaluate specific safety and/or effectiveness 
concerns that were identified during the pre-market review cycle, through review of the literature, or 
through the passive surveillance systems described above. Many device manufactures and professional 
societies are beginning to develop patient registries either as part of required post-market studies or for 
research and surveillance purposes.   

5.3.2 Issues specific to devices 

5.3.2.1 Source of exposure data (registry, health insurance claims) 

Device exposure can be measured through various sources such as patient registries and health 
insurance system administrative claims. Examples of registries are the Kaiser Permanente National Total 
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Joint Replacement Registry,70,71 or the Interagency Registry for Mechanically Assisted Circulatory 
Support (INTERMACS).72  Within registries, there is a large depth of information on the actual procedure 
and baseline demographics of the patients receiving a medical device with minimal selection bias. 
However, there is often limited information on longer term outcomes, and these registries are not 
structured to follow outcomes associated with a specific device. Moreover, most multicenter registries 
are relatively small with less than 5000 patients needed to detect and quantify a 1-in-200 adverse event 
frequency with adequate power.73 They further suffer from limited external validity as the data is most 
often generated at large referral centers with highly experienced operators.74  

Most health insurance data systems only capture procedure codes for medical device installation yet 
have substantial follow-up medical encounter data. For example using this approach to evaluate the 
impact of a medical device on subacute stent thrombosis rates requires the use of a surrogate for stent 
thrombosis such as rehospitalization for acute myocardial infarction, repeated catheterization, and/or 
intervention. Such surrogates are intrinsically limited because acute myocardial infarction or repeated 
coronary intervention may occur for reasons other than subacute stent thrombosis. Furthermore, using 
claims-based data does not provide adequate data from which to discern operator/procedural behavior 
and selection bias, for example, in identifying limitations in device availability based on individual 
anatomical composition. This issue is not unique to medical devices but is unique to claims-based data 
for research/surveillance purposes. The claims data also typically do not distinguish between essentially 
the same products made by different manufacturers, thus making desirable comparisons, very difficult. 
Finally, gaps in coverage must be taken into account when longer-term outcomes are assessed.  

5.3.2.2 Assessing medical device exposures  

An important current limitation of medical devices is the lack of a unique device identifier that facilitates 
tracking of patient level exposures.75  Although a proposed rule that most medical devices distributed in 
the US carry a unique device identifier (UDI) was recently published in the Federal Registrar, it has yet to 
be fully implemented.76 At present, devices lack unique identifiers, making exact source exposure 
considerably difficult. This further limits the potential for identifying a single poor performer within a 
device class. Once a UDI is implemented, it will allow for more accurate exposure data and provide the 
ability of linking data on specific patients across registries, claims data, electronic health records and 
other databases for more comprehensive device surveillance, and potential validation methods. 

While uncertainty in device exposure is not as great as with drugs, there are circumstances where it is 
not clear cut. Most exposures to implantable devices are chronic (with exception of temporary 
implantables, such as inferior vena cava filters), with the onset of exposure clearly defined at 
implantation. However, in some cases such as breast implants even after exposure ends with implant 
removal there could be silicone leakage of a ruptured breast, or as with dermal fillers absorbed over 
time, making the duration of exposure less obvious.14  

5.3.2.3 Confounding by indication 

As for drugs, the principles of confounding by indication apply to device safety studies. Similar analytical 
techniques described previously can be used to help to control for confounding-by-indication. 
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5.3.2.4 Product similarities/differences 

Unlike drugs and vaccines in which a single change in the molecular structure of the compound will 
constitute a new product, the structural components of devices can be changed and modified and so 
long as the modifications are considered “substantially equivalent” to the predicate device iterative 
versions of the device are considered the same. This allows for the potential of unforeseen differences 
in performance and risk of events, based on only subtle differences in the composition of the device.  To 
account for potentials in the difference in study outcomes by the device implanted, a standard 
poolability analysis can be carried out.  

5.3.2.5 Learning curve bias for device use/implantation 

When new devices are being studied in an early phase, most often elite investigators are selected to 
participate. Once the device becomes more saturated in clinical practice, new or less experienced uses 
of a medical device can undergo a substantial learning curve, which is defined as a constant proportional 
improvement in performance such as clinical outcomes of medical procedure, with each doubling of 
cumulative experience.77 This learning curve can have a substantial impact on event patterns observed, 
and may be difficult to account for without having data on a provider’s or an institution’s experience in 
terms of volume with the device in question.   

5.3.2.6 Variable device product life 

There are many factors that play a role in the total product life cycle of a medical device. Not only could 
outcomes be affected by underlying patient factors and device factors (such as biomaterials) but also 
importantly by the settings and use of the device by the patient and provider. For example the failure 
modes of many types of neurostimulators which function by providing electrical stimulation to various 
parts of the central or peripheral nervous system through the use of an implantable battery pack are 
dependent on the settings programmed by the provider and/or patient. Further compounding this 
obstacle is the fact that there can be a large amount of fluctuation in the settings of device for the 
patient over the course of therapy.  Rates of adverse events such as loss of therapy or overstimulation 
for the same device can therefore vary from patient to patient, and could only be accounted through 
the use of a multivariate analysis by having detailed data collection on device settings.  This level of data 
capture is often times very difficult leading to the potential for a large amount of unmeasured 
confounding beyond that accounted for in the collected information, leading to the possibility of having 
to rely on proxy adjustments or instrumental variable-based methods.78  

5.3.2.7 Drug-Device, Device-Device, Interaction  

Devices are frequently approved or used as systems treating an overall pathological condition involving 
several components including drugs and/or other devices; device components can also be used in 
combination to deliver a drug such as drug eluting stents. Devices can also be approved to be used in 
the presence of another device such as performing NovaSure ® endometrial ablation in the presence of 
Essure ® microinserts for tubal sterilization. In this case an observed rate of fallopian tubal perforation 
may be difficult to ascertain as to whether it was the result of either the NovaSure ® procedure alone, 
the Essure microinserts alone or the result of thermal heating of the Essure device caused by the 
NovaSure procedure.    
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A pharmacological treatment used in conjunction with a medical device to provide treatment for the 
same indication is an effect modifier for the device. Similarly, when devices are used in combination 
such as NovaSure® in the presence of Essure ® there is device-device interaction.  
 
Effect modification can be assessed by examining the exposure-adverse event associations in subgroups 
(calculating rates of events among patients that only have one device or not receiving concomitant 
pharmacological treatment versus those that have both devices and/or receiving concomitant 
pharmacological treatment) and by statistical modeling, for example, use of interaction terms in 
regression analysis.  
 

5.3.2.8 Environmental factors  

Environmental factors on a medical device may pose significant effects on additional hazards. The 
engineering components of medical devices are subject to many environmental factors such as 
electromagnetic interference (EM) originating from sources as diverse as MRI machines, anti-theft 
detectors, power lines etc. These sources may cause device malfunctions leading to unintended events 
such as burns, loss of effect, or overstimulation. Trauma to the device may also cause a device to 
malfunction leading to unexpected adverse events.  Environmental factors such as those listed above 
are all potential confounders.  

5.4 BLOOD COMPONENTS AND BLOOD DERIVATIVES 

5.4.1 Safety surveillance of blood components and blood derivatives 

The medicinal products manufactured from human donor blood generally fall into two broad categories: 
1) whole blood and blood components that are prepared as units from a single donation of an individual 
donor and 2) blood derivatives that are prepared from pools of material (typically plasma) obtained 
from many donors.  The circumstances related to the production and to the use of these two categories 
of products are sufficiently different that the FDA requirements for the reporting of adverse events are 
distinct for these two groups of products.  Except in the case of fatal adverse events, the collecting or 
transfusing facility is not required to report to FDA any adverse events related to administration of blood 
or blood components but must analyze and record these events locally (21CFR606.170).  In contrast, a 
licensed manufacturer is required to report adverse events related to the administration of blood 
derivatives to FDA’s Adverse Event Reporting System (AERS) according to the provisions set out for other 
biological products (21CFR600.80). 
 
This dichotomy in the reporting requirements for blood-derived products reflects some fundamental 
differences in the production and use of these two related groups of products.  Whole blood and blood 
components are collected, subjected to quality control testing, and processed in myriad facilities and 
then administered by transfusion services, often after additional processing and laboratory testing of 
the donor and the blood component.  Each unit of whole blood or blood component is effectively a lot 
and can vary substantially from other units, depending upon the genetic background and the 
environmental exposures of the donor and also depending upon the specific methods and materials 
used in the processing, packaging, and laboratory testing of the collected material.  As a consequence, 
the safety characteristics of each individual blood component unit may differ to a degree that is 
substantially higher than what can be attained for synthetic drugs.  In the case of blood derivatives, the 
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pooling of material from large numbers of donors can mitigate this variability by averaging the 
composition and diluting potentially noxious substances (e.g., certain antibodies).  Additionally, many 
blood derivatives are subjected to purification and decontamination processes that further increase the 
product’s homogeneity and reduce the risk from impurities like infectious disease agents. 
 
The special characteristics of the production and distribution of blood components have recently 
spurred the development of hemovigilance programs in many parts of the world.79  In the U.S., the CDC 
has implemented a Hemovigilance Module for its National Healthcare Safety Network.80  Participating 
transfusion services report blood component-related adverse events to CDC according to detailed case 
definitions on standardized forms.  It is anticipated that the accumulated data will be useful in 
identifying informative patterns in the occurrence of adverse events associated with transfusion of 
blood components.  In addition to the passive reporting activities noted above, efforts to obtain 
information regarding the occurrence of adverse events in conjunction with the administration of blood 
components and blood derivatives using active surveillance approaches have been recently reported.  
Menis and associates have examined the occurrence of serious noninfectious transfusion-related 
complications among U.S. elderly for the years 2007 and 2008 by analyzing administrative claims codes 
submitted to Medicare.81  Also, Daniel and colleagues have recently published their findings from a 
study of thrombotic adverse events associated with administration of immunoglobulin preparations as 
detected in insurance claims found in the HealthCore Integrated Research Database for 2008 through 
September of 2010.82  Thus, safety surveillance activities for blood components and blood derivatives 
have been evolving rapidly in recent years and include claims-based active surveillance activities that 
can help to inform the efforts of Mini-Sentinel with regard to surveillance for these product categories. 
 

5.4.2 Issues specific to blood components and blood derivatives 

In most respects, blood derivatives and blood components resemble conventional drugs quite closely in 
terms of the potential sources of confounding.  However, variability in the properties of blood 
components could introduce some additional complexities.  Certain types of variability (such as changes 
in product performance due to long periods of storage) would be expected to be distributed fairly 
homogeneously across healthcare settings represented within the data provided by Mini-Sentinel data 
partners.  This more homogeneous type of effect would yield a safety signal that would be expected to 
be reliably detected by Mini-Sentinel.  However, some potentially deleterious characteristics (such as 
those that might result from a particular set of donor policies and/or processing steps) could occur in 
only a restricted set of healthcare facilities.  This more clustered type of product heterogeneity might 
then be detected in a less reliable fashion.  Depending upon the distribution of this characteristic, a 
safety signal deriving from such a clustered effect might be detected by nationwide passive surveillance 
activities but not within the sample of information provided by the Mini-Sentinel data partners.  
Conversely, a safety signal that was marginally detected by passive surveillance efforts might yield a very 
strong signal from Mini-Sentinel, should the data partner coverage of the effected healthcare facilities 
be fortuitously favorable.  Consequently, clustering of variability in certain qualities of blood 
components could conceivably lead to misperceptions of certain safety signals for blood components in 
either direction and might result in false-negative results or overly positive assessment of signals. 
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6. A PROCESS FOR ASSESSING SIGNAL REFINEMENT RESULTS 

Assessment of a safety signal from a signal refinement activity should proceed in a series of steps. If the 
signal can be largely explained in a particular step, then some of the subsequent steps may not be 
necessary.  

6.1 DEVELOP A PRODUCT SPECIFIC ASSESSMENT PLAN  

The first step should be to develop a product specific protocol for assessing a positive signal. A protocol 
for assessing a positive signal should be developed during the study planning phase.  This protocol 
should be completed before actual safety surveillance begins for the specific medical product of 
interest. It should first state what explicitly defines a positive safety signal.  It is assumed to be based on 
the association of a medical product exposure and adverse event outcome that exceeded a pre-specified 
threshold in the direction of increased risk. The pre-specified threshold would be determined by the 
statistical methods and/or expert judgment.  A statistical threshold should account for the precision 
(random error) of the signal estimate, in addition to other considerations such as multiple comparisons 
in time (for longitudinal sequential analysis).  The details of possible statistical methods are beyond the 
scope of this framework, but other Mini-Sentinel Reports have addressed3-7 or are expected to address 
this.  Expert judgment on establishing a detection threshold may be particularly important for rare and 
serious outcomes. It is conceivable that just 2 exposed cases compared to none unexposed could be 
worrisome, yet it would not necessarily be statistically significant. 

Second, the protocol should include plans for data error checking among study sites that contributed 
data that generated the signal.  Third, the protocol should describe possible threats to validity in 
consideration of specific medical product issues such as likely sources of systematic error. Fourth, 
investigators need to describe possible secondary analyses such as examining patterns in time from 
exposure to outcome, adjusting for additional confounders, and using other comparison groups. Finally, 
if quantitative bias analysis is planned, it needs to be described based on the threats to validity 
anticipated and the resources available. 

6.2 REVIEW DATA VALIDITY, DESCRIPTIVE STATISTICS, AND ANALYTIC COMPUTER PROGRAMS 

Once it has been established that a positive signal was detected, the most expedient next step is to 
review the data.  The emphasis should be on ruling out errors in the data that contribute to the signal 
such as event counts (number of cases) and other important case information. Basic data verification 
steps would involve checking for missing values, invalid character values, outliers among numeric values, 
and variable (covariate) coding and programming errors.  Observed and expected counts and rates 
should be scrutinized and compared with each other and with incidence rates from the literature. Tables 
and graphs of descriptive statistics should be assembled to allow examination of rates by age, gender, 
data-providing organization, calendar year, possibly season, and simultaneous exposure to other 
drugs/products. These examinations can turn up explanations for the signal such as errors in background 
rates used, changes in coding practices at a participating organization, confounding due to secular 
trends, or inadequate adjustment for other confounders.  

The assessment of data validity should be a regular activity before a safety signal occurs. Ideally, a signal 
would arise from a validated population-based cohort designed for pharmacovigilance.83 To ensure this, 
a data coordinating center would enforce uniform data quality of all site data files via a common data 
model built for medical research purposes. However, electronic health care data systems are designed 
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for clinical care or billing and administrative functions and not necessarily for medical research.  As such, 
data not missing-at-random can be an issue. Missing data can arise from data collected during a clinical 
encounter but not entered into a searchable database (but possibly entered in an individual patient’s 
medical record) or data that were not obtained (but possibly should have been) and not present in any 
data system, including a patient’s medical record.  The distinction is that in the first instance, the data 
missing in an electronic database may be recovered by laborious medical record review.  In the second 
instance, the data are completely missing and unrecoverable. 

Regular data validity checks are particularly challenging under (near) real-time active surveillance for 
newly introduced medical products. In this context, data validity reviews should ideally occur at the 
same frequency as data are acquired (e.g. weekly). Completeness and timeliness of data are competing 
factors in real-time active surveillance, however, and the lag may vary by data source and by type of 
medical encounter. For instance, pharmacy data are commonly available in real-time, outpatient 
encounters can take a few days to process, and inpatient hospital encounters can take several months 
to process if originated from health insurance claim data. From the Mini-Sentinel Distributed Database 
(MSDD)experience, the average time lag is 6 months.  The lag time may be even longer when using 
other data sources. 

The possibility of error in the analysis computer programs should also be considered and the code 
checked.  An equivalent or very similar analysis should be carried out using the same data as the data 
generating the signal.  For example, if the signal emerged during sequential analysis, an equivalent non-
sequential analysis should be done, which should produce similar risk estimates as the original analysis if 
both were done correctly. 

6.3 CONDUCT SECONDARY ANALYSES 

6.3.1 Examine patterns in time from exposure to outcome 

The number of cases by day after the exposure (or after the start of the exposure period) can be visually 
graphed. If there is no relationship between exposure and outcome, the cases should be more or less 
uniformly distributed in time. Temporal scan statistics can also be used for detecting possible temporal 
clusters of outcomes events (cases) following exposure events.84,85  This is usually performed after a 
positive signal is detected to further refine the risk window length in subsequent secondary analysis.  
The temporal scan statistic can be used for formal statistical inference; it adjusts for the multiple testing 
of many possible risk windows.  If the graph or temporal scan statistical test indicates temporal 
clustering of outcomes after exposure, the risk window can be narrowed to include only this period and 
the analyses repeated, which would tend to result in higher relative risk estimates. 

6.3.2 Adjust for additional confounders 

If the examination of descriptive statistics reveals possible confounders that might not have been 
adequately controlled for, these should be dealt with by applying standard pharmacoepidemiologic 
methods such as multi-variable regression to the same dataset. Such analyses might include finer 
adjustment for age, adjustment for seasonal trends by month or by use of sinusoidal curves, adjustment 
for secular trends using a linear or other function, adjustment for chronic diseases or propensity to 
receive the drug or product of interest, and adjustment for one or more specific simultaneous exposures 
such as another drug or vaccine. 
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6.3.3 Use other comparison groups 

Another step in the investigation could be to use different comparison groups than in the original 
analysis, for example, historical comparison groups from different periods, concurrent controls that are 
selected or matched based on different criteria, and different control periods in self-controlled designs. 

6.4 CONSIDER QUANTITATIVE BIAS ANALYSIS 

If after the previous steps, the positive signal still generated an estimate of reasonable precision, then 
quantitative bias analysis may be feasible.  The objective is to determine the maximum amount of 
systematic error that could be tolerated without obviating the signal.  

Sources of systematic error most likely to influence the results from signal refinement need to be 
considered first: measurement error (misclassification for dichotomous measures), selection bias, 
and/or unmeasured confounding.  Next, appropriate bias parameters and their values need to be 
determined for each likely source of systematic error.  Enough information on bias parameters might be 
gathered from the research literature.  For example, if obesity was an unmeasured confounder, then the 
research literature might provide estimates of the likely prevalence of obesity in study population 
among users and nonusers of the medical product under investigation, along with an estimate of the 
relative risk of obesity to the outcome of interest. The estimates of prevalence and relative risk are bias 
parameters that would be applied in a quantitative bias analysis.  

In terms of choosing a method of quantitative bias analysis, it is important to note that estimates of bias 
parameters are themselves measured with error.  Probabilistic bias analysis can account for the 
measurement error in bias parameters and the systematic error they induce.  Probabilistic bias analysis 
begins with assigning probability distributions to the bias parameters; however bias parameters are still 
analyzed one at a time.  Monte Carlo methods are used to repeatedly sample from the probability 
distributions and to correct for the bias.  The main advantage of probabilistic bias analysis is that a 
frequency distribution of revised risk estimates are produced that also incorporate random error.  The 
mean of the distribution and its 95% simulation interval can be interpreted similarly to a conventional 
point estimate and its confidence interval. 

If quantitative bias analysis is properly performed, then the possible impact of misclassification, 
selection bias, and confounding will be assessed. The challenge is to accurately model the most relevant 
biases for the specific medical product and outcome pairs of interest.  The particular medical product, 
adverse event outcome, surveillance database and the judgment of the investigators all influence the 
choice and performance of quantitative bias analysis methods. 

Electronic resources for performing quantitative bias analysis include user developed spreadsheets or 
statistical program user defined macros and functions. As a companion to the Lash, et al text,43 
Microsoft® Excel spreadsheets were set up for probabilistic bias analysis.  A SAS® macro for performing 
multiple biases modeling these spreadsheets, including a SAS® macro for performing multiple biases 
modeling, are currently available via the Internet.86.  STATA® also has certain functions that are useful 
for quantitative bias analysis. A description of these along with a user defined macro command that 
performs both simple and probabilistic bias analysis is described in the STATA journal.87  Other 
epidemiologic software also have simple sensitivity analysis functions such as WINPEPI.88 

When reporting the results of a quantitative bias analysis, the following steps should be followed.  First, 
a clear rationale should be stated for assigning values and distributions (if used) to bias parameters.  
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Second, the sources of data for the bias parameters should be described, whether from an internal 
source within the overall study or externally, using published data from other studies.  Third, the 
method of bias analysis should also be described so that the reader of the report will see the connection 
from the conventional results to the bias adjusted results via the mathematical application of the bias 
parameters.  Fourth, if multiple biases are analyzed, then a description should be completed for each 
bias and the rationale for the order of corrections should be clearly explained. 

6.5 INTERPRET AND REPORT ASSESSMENT 

The interpretation and reporting of the signal assessment activity should be based on the protocol and 
the findings. The report should generally reflect if and where the excess positive risk could be explained 
by something other than a cause and effect relationship, such as data or systematic errors (information 
or selection bias, confounding).  The report should be written in the order of the assessment steps done 
as described in the previous sections.  If the assessment included a quantitative bias analysis, then 
details of the analysis should be described. 

A checklist for assessing signal refinement results is presented in Appendix B. 
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8. APPENDIX A:  WORKED EXAMPLES OF QUANTITATIVE BIAS ANALYSIS 

8.1 THE IMPACT OF AN UNMEASURED CONFOUNDER 

Rofecoxib, a non-steroidal anti-inflammatory (NSAID) selective Cox-2 inhibitor, was withdrawn from the 
US market in 2004. Several population based observational studies have shown that rofecoxib at daily 
doses of greater than 25 mg was associated with an approximate two-fold risk of AMI. 89  While these 
studies had adjusted for potential confounders such as age, sex, vascular risk factors, comorbidities and 
prescribed medications, other important confounders were generally not controlled: non-prescription 
aspirin or NSAIDs, alcohol use, body mass index (BMI), or tobacco use.   

Consider a hypothetical case-control surveillance 
study of AMI in 1000 rofecoxib users compared to 
4000 naproxen users.  The data in Table 3 generated 
an odds ratio of 2.026 with 95% confidence interval of 
(1.247, 3.291). However this odds ratio is not 
adjusted for the important unmeasured confounder 
of obesity.  If we have other information of the odds 
ratio of obesity (assessed as a binary covariate) and 
AMI, and the prevalence of obesity among both 
exposure groups, then a corrected odds ratio can be generated by probabilistic bias analysis.  

From previous published data90, the prevalence of obesity (BMI≥30) was 19% among rofecoxib users, 
20% among naproxen users., and the odds ratio of obesity (BMI≥30 vs. BMI<30) to AMI was 1.7.  
Triangular probability distributions can be defined for these bias parameters.  For the prevalence of 
obesity, the minimum = 0.1, the mode=0.2 (peak of the triangle) and the maximum = 0.3. This 
distribution will be used for both exposure groups.  For the odds ratio of obesity and AMI , the minimum 
=1.4, the mode=1.7, and the maximum=2.0. An internet available Microsoft Excel application, available 
as a companion to the Lash, et al text43, will be used for the simulation.86  Using these bias parameters 
with 10000 simulations, shows that the impact of the unmeasured confounding of obesity was minimal.  
The corrected odds ratio and 95% interval for the risk of AMI of rofecoxib users compared to naproxen  
2.02 (1.23-3.31).  This is very close to the original odds ratio of 2.03 (1.25-3.29). 

Using these spreadsheet tools, the maximum amount of unmeasured confounding from obesity that 
would push the original result to non-significance can also be estimated.  As shown in Figure 2, the 
prevalence of obesity in the rofecoxib users would have to be a mode of 70% to obviate the original 
association of AMI and rofecoxib use, corrected odds ratio: 1.51 (0.96-2.54). This level of obesity relative 
to the comparison group is unlikely. 

Table 3.  Hypothetical case-control study 

AMI no AMI 
rofecoxib 25 975 
naproxen 50 3950 

odds ratio :  2.026 (1.247, 3.291) p=0.0043 
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PROBABILISTIC SENSITIVITY ANALYSIS UNMEASURED CONFOUNDING                                              

Error 
Min Mode Mode2 Max No error

p1 0.60 0.70 0.70 0.80 Corr p
p0 0.10 0.20 0.20 0.30 0.80
RRDC 1.40 1.70 1.70 2.00
Sims

rofecoxib
Confounder AMI

a b A1 B1 A0 B0

c d C1 D1 C0 D0

m n M1 N1 M0 N0

Crude
RR (rofecoxib RR (rofecoxib-AMI) 1.63 p1 64.6%
OR (rofecoxib OR (rofecoxib-AMI) 1.65 p0 17.0%

RRDC 1.51   
0

Analysis Analysis
Conventional Conventional 0
Systematic Systematic
Total Error Total Error

1.52 (1.38 - 1.65) 1.54 (1.39 - 1.67)

Median (2.5th-97.5th percentile)

rofecoxib-AMI Relationship Adjusted for Obesity

RR Simulation Results (N=101) OR Simulation Results (N=101)

rofecoxib + rofecoxib -
Obesity -

rofecoxib + rofecoxib -
Obesity +

2 (1.24 - 3.22) 2.03 (1.25 - 3.29)

18.4 6.625

646.21000 4000

3674.291325.71

353.8 3320.5

11.8

Chosen Values

Median (2.5th-97.5th percentile)

Measure (95% CI)

2.03 (1.25 - 3.29)

679.5

50

AMI - 3282.3

AMI +

347.23950

Illegal 
Values

1.56 (1.01 - 2.65) 1.51 (0.96 - 2.54)

Outcome
Exposure

Input Bias Parameters

Total

100

2 (1.24 - 3.22)

Variable Names

Data (Enter Crude rofecoxib-AMI Data in Blue Cells)
Obesity

38.2

667.7627.8

Crude and Adjusted Measures of rofecoxib-AMI Relationship

Instructions

Adjusted SMR

Total
rofecoxib rofecoxib -

975

This spreadsheet can be used to conduct a probabalistic sensitivity analysis to correct for unknown of  unmeasured 
counfounding and random error simultaneously. 

Enter distributions for the bias parameters in the blue 
cells to the lef t and the crude data in the blue cells 
below. Cells in green give the results af ter adjusting for 
the unmeasured confounder. Note that white cells are 
expected values and therefore do not have to be 
integers.

Run Simulation

Figure 2. Probabilistic bias analysis of the impact of obesity as an unmeasured confounder on the risk of 
acute myocardial infarction (AMI) following use of rofecoxib. 89 
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8.2 THE IMPACT OF OUTCOME MISCLASSIFICATION  

Using the previous example, consider a hypothetical differential misclassification of the AMI outcome. 
For illustrative purposes, assume that AMI would be more likely to be diagnosed following rofecoxib 
exposure compared to naproxen. For the rofecoxib group the triangular distributions of sensitivity was 
assigned minimum=0.9, mode=0.95, maximum=1.0, and for the naproxen group, minimum=0.85, 
mode=0.9, maximum=1.0.  Specificity was assigned minimum 0.95, mode=0.97, maximum=1.0, for both 
groups. As shown in Figure 3, impact of outcome misclassification, given these bias parameters was 
severe.  The calculated odds ratio interval due to systematic error was wide: 2.49 (0.1 - 346), which 
completely overwhelms the variation due to random error. 

 

 

PROBABILISTIC OUTCOME MISCLASSIFICATION                                                                  Chapter 8

Error 
Min Mode Mode2 Max No error

Se (rofecoxib+) 0.90 0.95 0.95 1.00 Corr Se
Se (rofecoxib-) 0.85 0.90 0.90 1.00 0.80
Sp (rofecoxib+) 0.95 0.97 0.97 1.00 Corr Sp
Sp (rofecoxib-) 0.95 0.97 0.97 1.00 0.80

2.00 Sims 100

Exposure rofecoxib Outcome AMI

1
Total Total

a b A1 B1 Se(E+) 95.6%
Se(E-) 90.5%

c d C1 D1 Sp(E+) 96.1%
Sp(E-) 95.7%

m n M1 N1

Observed Measure (95% CI) Single Corrected Estimate Measure
RR (rofecoxib-AMI) 2 (1.24 - 3.22) RR (rofecoxib-AMI) 0.43
OR (rofecoxib-AMI) 2.03 (1.25 - 3.29) OR (rofecoxib-AMI) 0.44

Analysis Analysis
Conventional Conventional 1744
Systematic Systematic
Total Error Total Error

2.49 (0.1 - 346.13)

rofecoxib 

1015.3

AMI +25 75 75

2.45 (0.1 - 343.31)

Variable Names

OR Simulation Results (N=101) Illegal 
Values

Corrected Data

4925

Total

AMI -

-142.1

Chosen values

Input Bias Parameters

4925

Data (Enter rofecoxib-AMI Data in Blue Cells) Single Simulated Corrected Data

AMI -

Total

2.45 (0.09 - 422.18)

2.03 (1.25 - 3.29)

2.66 (0.1 - 320.9)

1000.0 4000.01000 4000

4142.1

2 (1.24 - 3.22)

975

Median (2.5th-97.5th percentile) Median (2.5th-97.5th percentile)
RR Simulation Results (N=101)

Observed Data
rofecoxib -

AMI +

rofecoxib + rofecoxib -

-15.3

3950

50

Misclassification type

Instructions

This spreadsheet can be used to conduct a probabalistic sensitivity analysis to correct for outcome misclassification and 
random error simultaneously. The example follows the example in chapter 8.

Enter the bias parameter distributions in the blue cells
the lef t and the observed data in the blue cells below

Cells in green give the results af ter correcting for outco
misclassif ication. Note: green cells are expected value

and therefore do not have to be integers.

Run Simulation

Figure 3. Probabilistic bias analysis of the impact of outcome misclassification on the risk of acute 
myocardial infarction (AMI) following use of rofecoxib. 89 
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9. APPENDIX B: CHECKLIST FOR ASSESSING SIGNAL REFINEMENT RESULTS 

□ 1. Develop a product specific assessment plan 

• Explicitly define what would be a positive safety signal. 
• Include plans for data error checking. 
• Describe possible threats to validity. 
• Describe possible secondary analyses. 
• Plan for quantitative bias analysis based on the threats to validity anticipated 

and the resources available. 

□ 2. Review data validity, descriptive statistics 

• Rule out errors in the data. 
• Examine descriptive statistics. 
• Check analytic computer program code 

,and analytic computer programs 

□ 3. Conduct secondary analyses 

• Perform an equivalent or similar analysis using the same data. 
• Examine patterns in time from exposure to outcome. 
• Adjust for additional confounders. 
• Use other comparison groups. 

□ 4. Consider quantitative bias analysis 

• Assess feasibility of quantitative bias analysis (positive signal generated an 
estimate of reasonable precision). 

• Consider sources of systematic error most likely to influence the results. 
• Determine appropriate bias parameters, their values, and the quantitative 

bias analytic method. 
• Perform quantitative bias analysis to determine the maximum amount of 

systematic error that could be tolerated without obviating the signal. 

□ 5. Interpret and report assessment 

• Based on the protocol and the findings of the assessment. 
• Should generally reflect if and where the excess positive risk could be explained 

by something other than a cause and effect relationship. 
• If the assessment included a quantitative bias analysis, then details of the 

analysis should be described. 
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