

Sentinel Innovation Day

Brigham and Women's Hospital Founding Member, Mass General Brigham **Duke** University School of Medicine

VANDERBILT **VANDERBILT**

MEDICAL CENTER

KAISER PERMANENTE®

Agenda

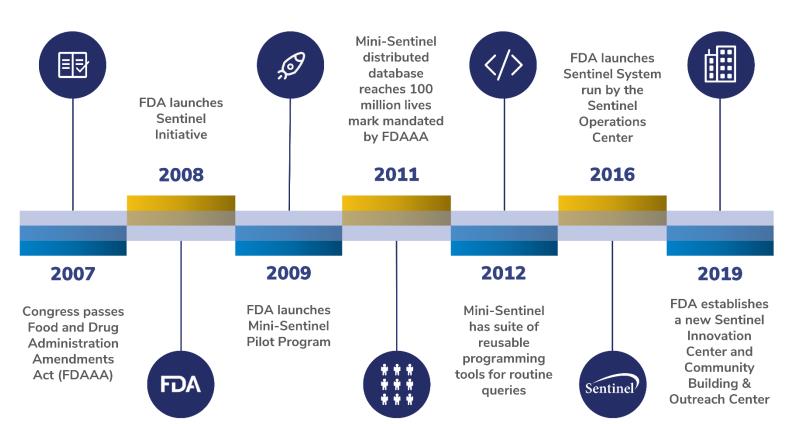
- 1. Welcome and Sentinel overview
- 2. FDA opening remarks
- 3. DI2: Representation of unstructured data across Common Data Models
- 4. DI3: Identification and mitigation of structured EHR source data mapping issues
- 5. FE1: Computable phenotyping framework
- 6. FE2: NLP tools for cohort identification, exposure assessment, covariate ascertainment
- 7. FE3: Improving probabilistic phenotyping of incident outcomes
- 8. CI1: Enhancing Causal Inference in the Sentinel System
- 9. CI2: A causal inference framework for Sentinel
- 10. Closing remarks

Overview

FDA's Sentinel system

2007 FDA Amendments Act mandates FDA to establish *active surveillance system* for monitoring drugs using electronic healthcare data

Through the Sentinel Initiative, FDA aims to assess the postmarketing safety of approved medical products



History of the Sentinel Initiative

Sentinel Innovation Center (IC) Vision

<u>Current Sentinel system</u> <u>limitations</u>

Inability to identify certain study populations of interest from insurance claims

Inability to identify certain outcomes of interest from insurance claims

Other limitations (inadequate duration of follow-up, the need for additional signal identification tools)

Data infrastructure (DI)	Feature engineering (FE)• Emerging methods including machine learning and scalable automated natural language
<u>Causal inference</u> <u>(CI)</u>	Detection analytics (DA)
• Methodologic research to address specific challenges when using EHRs such as approaches to handle missing data, calibration methods for enhanced confounding adjustment	• Development of signal detection approaches to account for and leverage differences in data content and structure of EHRs

Sentinel Innovation Center

Initiatives

Sentinel Innovation Center vision

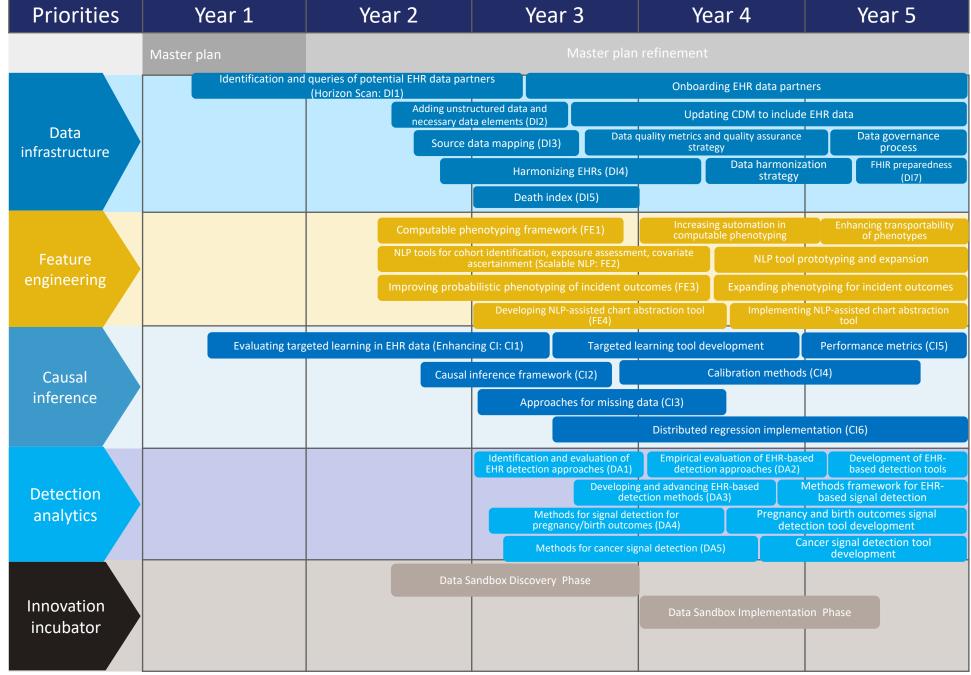
A query-ready, quality-checked distributed data network containing EHR for at least 10 million lives with reusable analysis tools

2020

2024

IC Master Plan:

A snapshot of ongoing and future activities

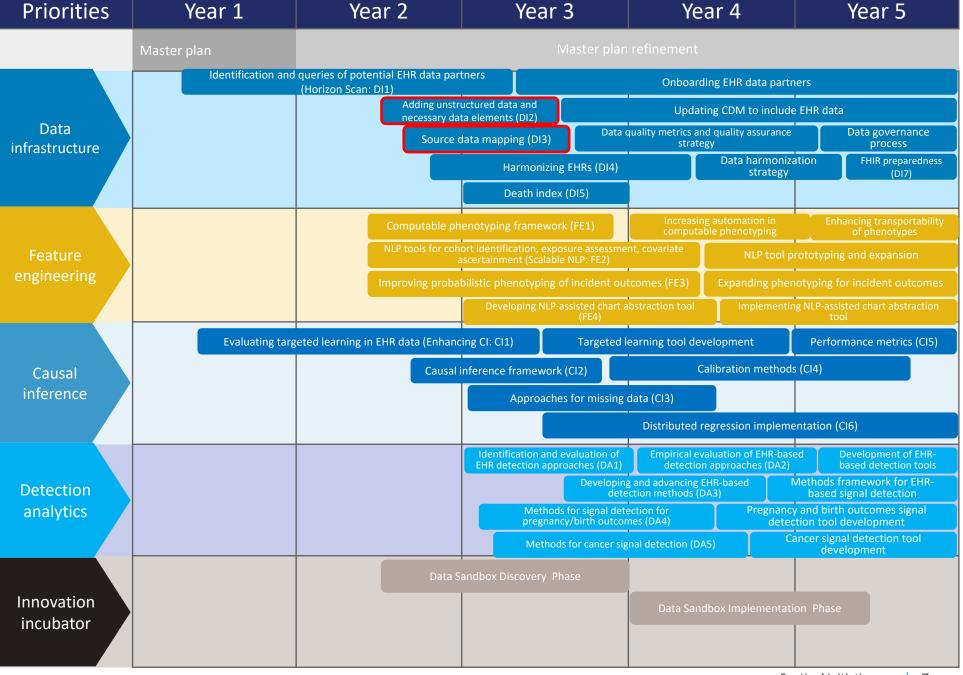


Sentinel Initiative 6

• DI2:

Representation of unstructured data across Common Data Models

• **DI3**: Identification and mitigation of structured EHR source data mapping issues



Challenges and Opportunities in Integrating Electronic Health Record (EHR) Data in Sentinel

Keith Marsolo, PhD Associate Professor Department of Population Health Sciences Duke Clinical Research Institute Duke University School of Medicine

Purpose

IC Projects -- Highlight Challenges and Opportunities

As the Sentinel Innovation Center works to establish an infrastructure of administrative claims linked with electronic health record (EHR) data on 10 million+ lives:

• Focus = two projects that develop aspects of the infrastructure needed to bring EHR data into the Sentinel framework

Each highlights potential challenges and opportunities presented by EHR

DI2: Representation of unstructured data across Common Data Models

DI3: Identification and mitigation of structured EHR source data mapping issues

DI2: Representation of Unstructured Data Across Common Data Models

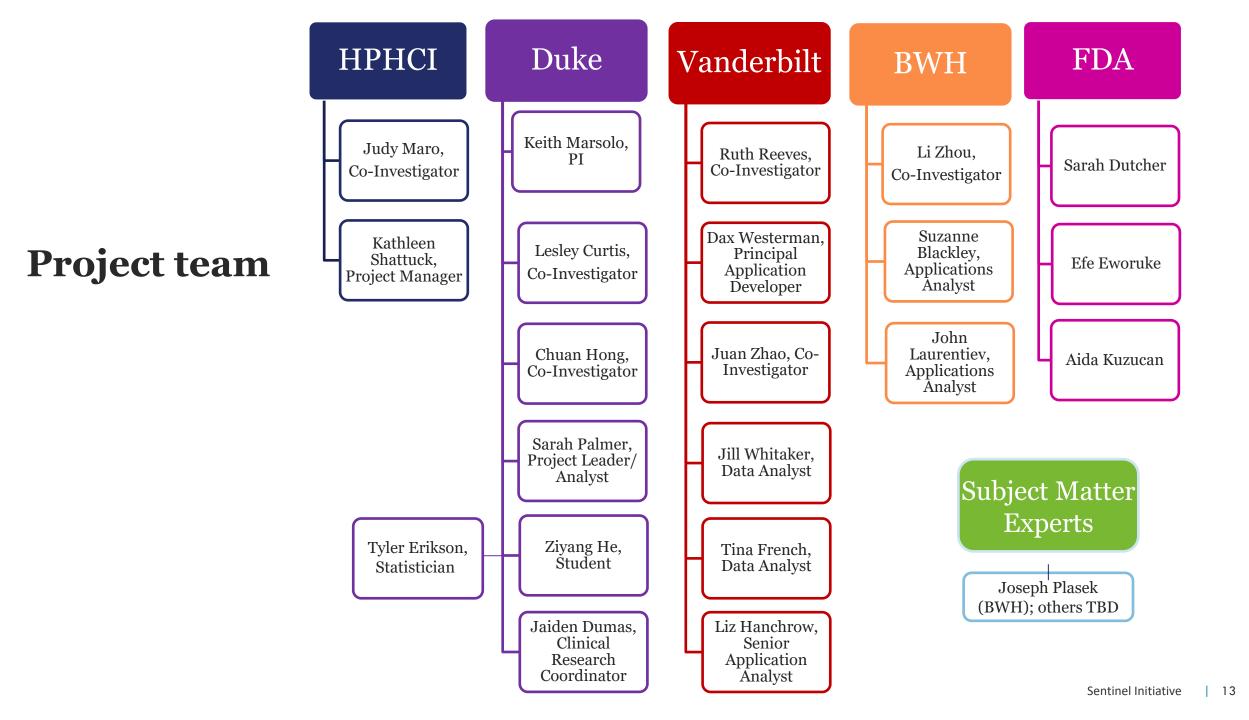
Incorporating Unstructured Data into a Common Data Model

Goal: To guide the Sentinel Network on **how best to incorporate information derived from unstructured data into a Common Data Model (CDM) framework.**

Objectives:

- *1)* What information is important? Identify the priority elements that should be derived from unstructured data
- 2) What NLP tools are in use & how are they used?; What information is available within a note? Assess the overall availability of the priority elements within the Sentinel ecosystem
- *3) How to best represent information derived from unstructured text?* Recommend how those priority elements should be represented in the Sentinel Common Data Model

Project completion date: May 31, 2022 (to be extended)



Objective 1 – What information is important?

Process:

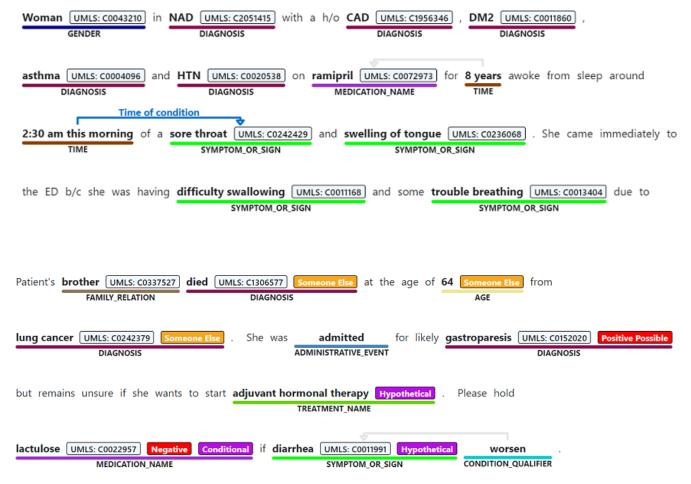
Generated list of concepts from commonly-used NLP pipelines (commercial & open-source)

- Focused mainly on broad categories, not specific items, unless called out in documentation (e.g., medications, not aspirin)
- Looked at the basic functionality provided by each tool, not every research project
- Generated "good enough" list stopped when we reached saturation

FDA reviewed list, identified any missing elements & assigned priority rankings (high / medium / low) - highest priority given to those concepts not easily obtained from claims that are also important for drug safety studies

End Product:

Set of priority elements to be derived from unstructured text.



Example priority rankings (subset)

	Domain	Concept(s)		Priority		Notes	
	Cancer	Site		High		Several ARIA insufficiency rankings due to lack of data on cancer (e.g.,	
		Histology		High		staging)	
Concepts		Procedure		High			
from existing tools	Condition	Diagnoses		Medium		Often captured in claims	
		Signs / Symptoms		High		Less available in claims, useful in different aspects of studies	
		Family History (Type)		Medium		Useful in some studies, but not all	
		Medical History (Type)) High			Often gaps in EHR data, medical history important to capture	
	Medication	Class		Low		Can be inferred from drug name	
	Concept(s)		Pric	Priority Not		tes	
	Timing & duration of medication		High		Particularly important for inpatient medications		
Missing	Physical findings (e.g., vital signs)		High		Key covariate for FDA studies, under-captured in claims		
concepts	Indication for a drug		High		Rationale for why a drug is given		
	Oxygen support		High		Relevant for many COVID-19 studies		
	Death (date) & c	ause	Low*		Capture of death data varies by Sentinel Data Partner		

Objective 2 – What NLP tools are in use and how are they used? What information is available within a note?

Process:

Distributed survey to partners within the Sentinel ecosystem to assess their NLP capabilities (e.g., tool(s) used, notes processed, concepts extracted, etc.) – understand how well the current state of NLP use aligns with the priority concepts identified by FDA

Perform chart annotations at 2 sites (Vanderbilt, Brigham & Women's Hospital) to assess availability of priority elements within 2 different use cases *(in progress)*

End Product:

Survey responses from Partners on their ability to extract priority data elements from unstructured text, and statistics on the overall availability of priority data elements within the unstructured data as determined by chart annotation.

NLP capabilities survey (initial results)

Distributed to 14 Sentinel Data Partners & 8 partners affiliated with the Innovation Center

A total of 17 responses received (13 from Sentinel Data Partners)

- 12 use NLP in some capacity
- 50% for project-specific research; 50% for research & "operational" purposes

Wide variety of tools used / notes processed (type, number of years)

Scope of concepts extracted also varies widely

- 9 of 12 report being able to extract Diagnoses (highest percentage)
- Handful of other concepts extracted by >50% of respondents (e.g., cancer site & histology, smoking status, signs & symptoms)

Percentage of respondents with a deployed NLP solution (n=12) that can extract the specified high & medium priority concepts

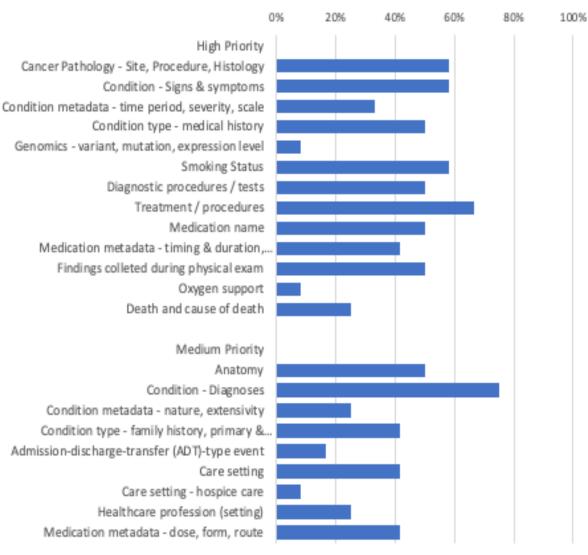


Chart annotation - Motivation

<u>Vision</u>

A future state where Sentinel partners with access to EHR data have processed all / some of their clinical notes through an NLP pipeline (or pipelines).

- Some projects may require the development of new pipelines/classifiers,
- > Others will rely on the "stock" NLP outputs.

We want to use those derived data elements in a Sentinel analysis.

<u>Issues to consider</u>:

- What note type(s) need to have been processed?
- What time frame had to have been covered?

<u>Example</u>

Looking for history of MI:

• patient had MI 10 years ago

Can we assume it is mentioned in the note at every visit, or just a subset (i.e., first visit with a new provider; every visit for the 2 years after the event, etc.)?

Chart annotation (in progress)

Focus on two use cases

- Hospitalized patients with COVID-19
- Cancer

For both, we propose to look at a subset of notes, since we will not necessarily be able to assume that (future) partners will have run NLP on everything (e.g., all hospital discharge summaries are included, but not respiratory therapist notes)

Purpose is not to develop a classifier or a pipeline, but to describe the information contained in the notes of the patients in each cohort

Hospitalized patients with COVID-19

Population:

- Index event inpatient encounter with an admitting diagnosis of COVID-19 between April 1, 2020 and December 31, 2021
- Limit to patients who are age >= 18 at the time of admission.

Sampling strategy:

- Cohort 1 patients without a billing code for supplemental oxygen. Select 35 patients at random.
- Cohort 2 patients with a billing code for supplemental oxygen. Select 35 patients at random.

Analysis:

- Primary Pull the discharge summary associated with the hospitalization and annotate priority concepts (e.g., oxygen use, conditions, medication exposure & metadata, smoking status)
- Secondary For a subset of patients in each cohort (5-10, randomly selected), run a query to identify all notes that include keywords related to oxygen use. Review note / paragraph / sentences around the keyword and determine whether it indicates oxygen use.

Rationale for design choices:

- The secondary analysis will allow us to characterize the degree of "missingness" related to oxygen use, as discharge summaries are not expected to contain the full detail related to oxygen use
- Discharge summaries were chosen because if we are planning to use pre-computed NLP concepts in an analysis, discharge summaries are more likely to be processed across a network than specialty notes (e.g., respiratory therapy)
- Stratifying by billing codes for supplemental oxygen should ensure there is a mix of patients who did and did not receive oxygen compared with a purely random sample of hospitalized patients
 Sentinel Initiative

20

Cancer

<u>Population</u>:

Index event

- Patients with a prescription/order for darzalex (daratumumab) and with no prescription/order for darzalex in the prior 3 years
- Index event should be between January 1, 2016 and November 30, 2021.

Sampling strategy:

- Select 30 patients at random from the cohort
- Annotate the physician note(s) associated with the visit where the patient was prescribed the medication (assume new prescription occurs in the outpatient setting)

Analysis:

- Annotate selected concepts (e.g., conditions, medications, smoking status, those specific to label);
- Determine if available concepts are sufficient to determine indication behind prescription

DARZALEX example

Medication-related concepts Diagnosis-related concepts

Concepts that are expected to be primarily NLP-based

- in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are <u>ineligible for autologous</u> <u>stem cell transplant</u>
- in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy <list of candidate therapies required to define this part>
- in combination with pomalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received at least two prior therapies including lenalidomide and a proteasome inhibitor
- as monotherapy, <exclude patients with concurrent candidate therapies > for the treatment of patients with multiple myeloma who have received <u>at least three prior</u> lines of therapy including a proteasome inhibitor (PI) and an immunomodulatory agent or who <u>are double-refractory</u> to a PI and an immunomodulatory agent.

Objective 3 – How to best represent information derived from unstructured text? (in progress)

Process:

Assess current approaches for representing data derived from unstructured text (from other Common Data Models, NLP tools, etc.)

Describe tradeoffs between approaches (e.g., ease of querying, burden on partners, strengthens and weaknesses of different terminologies)

End Product:

Develop set of recommendations for the Sentinel Operations Center as they make decisions on extending the Sentinel Common Data Model

DI3: Identification and mitigation of structured EHR source data mapping issues

Mapping of EHR Data and developing quality metrics

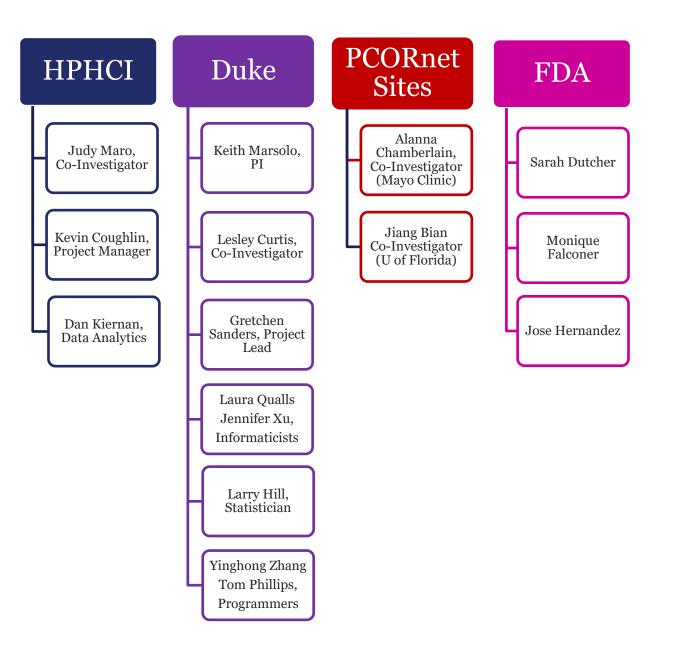
<u>Goal:</u>

To assess the mapping of structured electronic health record (EHR) data to reference terminologies and to develop quality metrics to allow for comparisons across domains within a data source to further identify issues.

Objectives:

- 1) Develop procedures to assess the mapping of structured EHR data to reference terminologies for laboratory results, medication orders and administrations (inpatient and outpatient) & characterize the severity of issues that are uncovered
- 2) Develop standardized metrics related to medications & laboratory results that allow for comparisons across domains within a data source using profiles of records across time, care setting, population, etc. This work will supplement the Sentinel Operations Center's Data Quality Measures (DQM) in EHRs project by defining *new* metrics for assessments that *are not* routinely conducted in EHR datasets.

Project completion date: September 30, 2022



Motivation – Harmonization of EHR data sources

Many EHR data domains (e.g., medication orders, laboratory results) are not captured in standard formats

To use these data for research or for data exchange, must harmonize to a reference standard

Examples shown within these slides are taken from the National Patient-Centered Clinical Research Network (PCORnet[®]), but the same challenges exist regardless of the source

For analyses that leverage linked claims-EHR data, findings from this project can provide guidance on the types of EHR data to be included in a CDM and how to ensure and verify accurate transformation

Representing a medication in RxNorm

	RxNorm Term Type		Information	encoded	J	Example medication representation
	Description	Ingredient(s)	Strength	Dose Form	Brand Name	Original string - Augmentin XR 12 HR 1000 MG Extended Oral Release Tablet
Most Granular	Semantic Branded Drug	х	х	х	х	Augmentin XR 12 HR 1000 MG Extended Release Oral Tablet
	Semantic Clinical Drug	х	х	х		12 HR Amoxicillin 1000 MG / Clavulanate 62.5 MG Extended Release Oral Tablet
	Brand Name Pack	Х	Х	Х	Х	N/A
	Generic Pack	Х	Х	Х		N/A
	Semantic Branded Drug Form	Х		х	х	Amoxicillin / Clavulanate Extended Release Oral Tablet [Augmentin]
	Semantic Clinical Drug Form	х		х		Amoxicillin / Clavulanate Extended Release Oral Tablet
\downarrow	Semantic Branded Dose Form Group*			х	х	Augmentin Oral Product; Augmentin Pill (Requires two records)
	Semantic Clinical Dose Form Group*	х		х		Amoxicillin / Clavulanate Oral Product; Amoxicillin / Clavulanate Pill (Requires two records)
	Semantic Branded Drug Component	х	х		х	Amoxicillin 1000 MG / Clavulanate 62.5 MG [Augmentin]
	Brand Name				Х	Augmentin
	Multiple Ingredients	Х				Amoxicillin / Clavulanate
	Semantic Clinical Drug Component*	х	х			Amoxicillin 1000 MG; Clavulanate 62.5 MG (Requires two records)
	Precise Ingredient	Х				N/A
Least Granular	Ingredient*	х				Amoxicillin; Clavulanate (Requires two records)
	Dose Form			Х		Extended Release Oral Tablet
	Dose Form Group*			Х		Oral Product; Pill (Requires two records)
Non-specific	Prescribable Name Synonym					
	Tall Man Lettering Synonym					

Within the PCORnet Common Data Model, medication orders and administrations (at most sites) are coded using RxNorm

RxNorm is an interoperability standard maintained by the National Library of Medicine that represents medication orders and administrations at various levels of granularity

Even if Sentinel leverages a different standard to represent EHR-based medications, data partners may still need to transform data to/from RxNorm

* Denotes term types that require multiple records to represent multi-ingredient medications

PCORnet has defined a set of preferred "tiers" for the different RxNorm Term Types

		RxNorm Term Type		Information	encoded	
	Term Type	Description	Ingredient(s)	Strength	Dose Form	Brand Name
	SBD	Semantic Branded Drug	Х	х	х	х
Tier 1	SCD	Semantic Clinical Drug	Х	х	Х	
	ВРСК	Brand Name Pack	Х	X	Х	Х
	GPCK	Generic Pack	Х	Х	Х	
	SBDF	Semantic Branded Drug Form	х		х	х
	SCDF	Semantic Clinical Drug Form	х		х	
Tier 2	SBDG	Semantic Branded Dose Form Group*			х	х
	SCDG	Semantic Clinical Dose Form Group*	х		x	
	SBDC	Semantic Branded Drug Component	х	х		х
	BN	Brand Name				Х
	MIN	Multiple Ingredients	Х			
	SCDC	Semantic Clinical Drug Component*	х	х		
Tier 3	PIN	Precise Ingredient	Х			
	IN	Ingredient*	х			
	DF	Dose Form			X	
Tier 4	DFG	Dose Form Group*			X	
(Do not use)	PSN	Prescribable Name				
	SY	Synonym				
	TMSY	Tall Man Lettering Synonym				Continal In

* Denotes term types that require multiple records to represent multi-ingredient medications

Example quality issue – medication mapping

Highest-volume medication records by RxNorm code					Highest-volume medication records by name (within the EHR)			
Rank based on Code	RxNorm Code	Medication name (derived from RxNorm code)	Record Count by Code	Rank based on Name	Medication name (from EHR)	Record Count by Name	Percent Agreement	
1	Null or missing		1257171	1	Null or missing	1257171	100%	
2	313002	Sodium Chloride 9 MG/ML Injectable Solution	801348	2	Sodium Chloride	1007029	79.6%	
3	307668	Acetaminophen 32 MG/ML Oral Suspension	321510	3	Acetaminophen 300MG / Codeine Phosphate 15 MG Oral Tablet	511779		
4	197803	Ibuprofen 20 MG/ML Oral Suspension	293209	4	Ibuprofen 20 MG/ML / Pseudoephedrine Hydrochloride 3 MG/ML Oral Suspension	293218		
5	540930	Water 1000 MG/ML Injectable Solution	286133	5	Water 1000 MG/ML Injectable Solution	287011	99.6%	
6	309778	Glucose 50 MG/ML Injectable Solution	285557	6	Glucose 50 MG/ML / Potassium Chloride 0.01 MEQ/ML / Sodium Chloride 0.0342 MEQ/ML Injectable Solution	286108	99.8%	

Shading indicates a discordance in medications (e.g., RxNorm code represents a single ingredient in RxNorm vs. multi-ingredient order within the EHR)

Objective 1: Methods to assess mapping of structured EHR data to reference terminologies

General approach:

- Develop queries to assess mapping of medication orders, medication administrations and laboratory tests – limit analysis to the top 200 by volume
- For each medication / lab, generate statistics on all the different combinations within the structured fields and "raw" source fields
- For example, for a given medication name, summarize the number of records/patients for associated RxNorm codes, dose units, dose forms, as well as the corresponding "raw" fields

RAW Medication Name	RxNorm Code	CDM Dose Unit	RAW Dose Unit	Number of Records	Number of Patients
	1044532	Other		2	2
	1044532	Other	mg of elemental	13	11
	1044532	Other	mg of salt	50564	14817
CALCIUM CARBONATE 300 MG (750 MG)	1044532	Other	tablet	1	1
CHEWABLE TABLET	1484737	Other		3	2
	1484737	Other	mg of elemental	4	3
	1484737	Other	mg of salt	51092	14887
	1484737	Other	tablet	2	2

Example statistics for Dose Unit for a single medication

Objective 1: Evaluation

- Generate statistics on number of medication codes/ laboratory tests associated with more than one name within the EHR and vice versa
- Concordance between lab name / medication name (brand and/or ingredient) within the EHR and that derived from the associated code
- Concordance between discrete fields (e.g., lab result unit, medication dose, etc.) and those associated with the associated LOINC / RxNorm code
- Generate characterization of issues by severity (e.g., LOINC code mis-match, combination medication represented by single-ingredient RxNorm code, generic medication represented by brand name, etc.)

End product:

Procedures that can be used to assess mapping of structured EHR domains and a set of statistics on the severity of issues at 2 pilot sites (PCORnet).

Severity	Example issue	Rationale
Critical	(1) Lab test mismatch (incorrect	(1-3) The LOINC/RxNorm codes that are
	LOINC code)	assigned to these records are incorrect and
	(2) Multi-ingredient drug uses	would not actually represent the test result
	single ingredient RxNorm code	or exposure to the specified medication.
	(3) Single ingredient drug uses	
	multi-ingredient RxNorm code	
Major	(1) Ingredient-level RxNorm code	(1) The ingredient is correct, but the other
	utilized when more granular	metadata is missing, meaning those records
	available (single-ingredient drugs	may be excluded if the drug has forms that
	only)	are not part of an analysis (i.e., topical
	(2) More granular RxNorm code	creams). (2) This example is the inverse –
	used than supported by the data	records that should have been excluded
		were included.
Moderate	(1) Generic medication uses brand	(1) Any study that looking for the use of a
	name RxNorm code	specific brand of medication will include
	(2) Brand name medication uses a	extra records.
	generic-level RxNorm code	(2) Studies that are looking at the use of a
		specific branded medication will miss
4		records.
Minor	(1) Distribution of lab results is an	(1) The test may be only used on specific
	outlier for a given LOINC.	populations (e.g., inpatients), which may
		bias results.

Example quality issue – differences based on provenance (orders vs. medication administrations)



Objective 2: Standardized metrics to generate comparisons based on provenance

General approach:

Develop queries that will support the comparison of records based on provenance – medication orders vs. administrations; billed diagnoses vs. clinician-entered – to identify potential data issues.

Define specific conditions & associated concepts to investigate (e.g., diagnoses, procedures, medications, labs). Look at values within each cohort as well as the population as a whole.

Distribute query package to partner sites to generate summary statistics. Focus of analysis will be within-DataMart comparisons, though cross-DataMart comparisons are also possible.

End product:

Set queries to support cross-domain comparisons within a dataset, at both condition and population-level, along with statistics describing the performance of each at partners sites.

				NUMBER OF	NUMBER OF
COHORT	PERIOD	CONCEPT	PROVENANCE	PATIENTS	RECORDS
COPD	2016	CAD DX	ORDERED		
COPD	2016	CAD DX	BILLED		
COPD	2016	CAD DX	DERIVED (e.g., NLP)		
COPD	2017	CAD DX	ORDERED		
COPD	2017	CAD DX	BILLED		
COPD	2017	CAD DX	DERIVED (e.g., NLP)		
ALL	2016	CAD DX	ORDERED		
ALL	2016	CAD DX	BILLED		
ALL	2016	CAD DX	DERIVED (e.g., NLP)		
ALL	2017	CAD DX	ORDERED		
ALL	2017	CAD DX	BILLED		
ALL	2017	CAD DX	DERIVED (e.g., NLP)	1	- di al a

Diagnoses by provenance for a specific cohort (COPD) and the population as a whole.

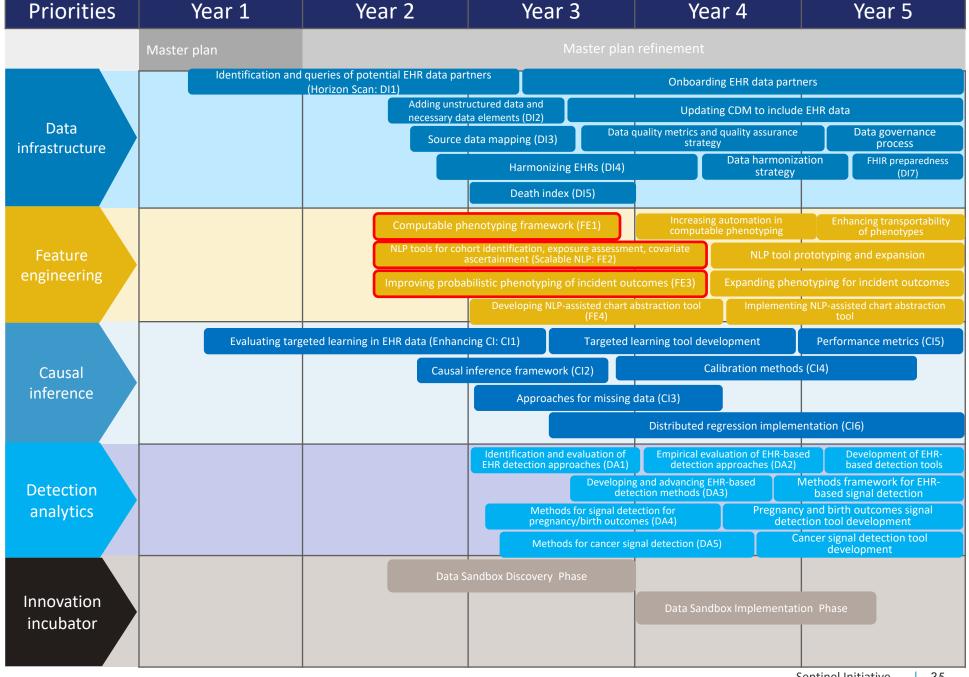
			ENCOUNTER		NUMBER OF
COHORT	PERIOD	MEDICATION	TYPE	PROVENANCE	PATIENTS
CKD	2016	LOOP DIURETIC	AMBULATORY	PRESCRIBING	
CKD	2016	LOOP DIURETIC	AMBULATORY	MED_ADMIN	
CKD	2016	LOOP DIURETIC	AMBULATORY	BOTH	
CKD	2016	LOOP DIURETIC	INPATIENT	PRESCRIBING	
CKD	2016	LOOP DIURETIC	INPATIENT	MED_ADMIN	
CKD	2016	LOOP DIURETIC	INPATIENT	BOTH	
ALL	2016	LOOP DIURETIC	AMBULATORY	PRESCRIBING	
ALL	2016	LOOP DIURETIC	AMBULATORY	MED_ADMIN	
ALL	2016	LOOP DIURETIC	AMBULATORY	BOTH	
ALL	2016	LOOP DIURETIC	INPATIENT	PRESCRIBING	
ALL	2016	LOOP DIURETIC	INPATIENT	MED_ADMIN	
ALL	2016	LOOP DIURETIC	INPATIENT	BOTH	

Number of patients with a medication by provenance and encounter type for a specific cohort (CKD) and the population as a whole.

Questions?

FE2: NLP tools for cohort identification, exposure assessment, covariate ascertainment

FE3: Improving probabilistic phenotyping of incident outcomes



Health Outcomes and Covariates for Computable Phenotyping Using EHR Data

Lessons Learned from : Advancing scalable natural language processing approaches for unstructured electronic health record data

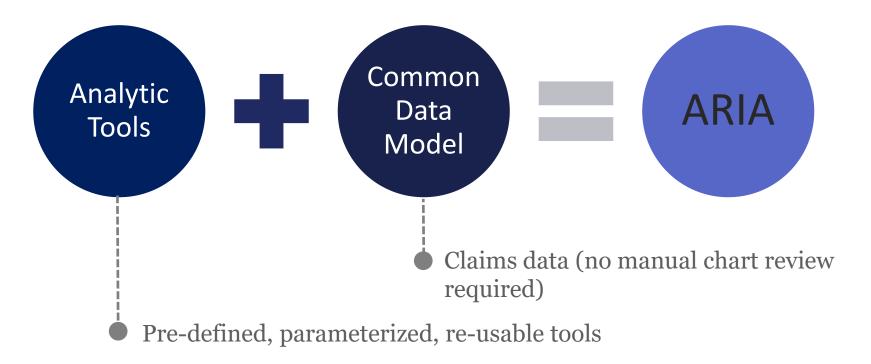
Workgroup Leads: David S. Carrell, PhD

Outline

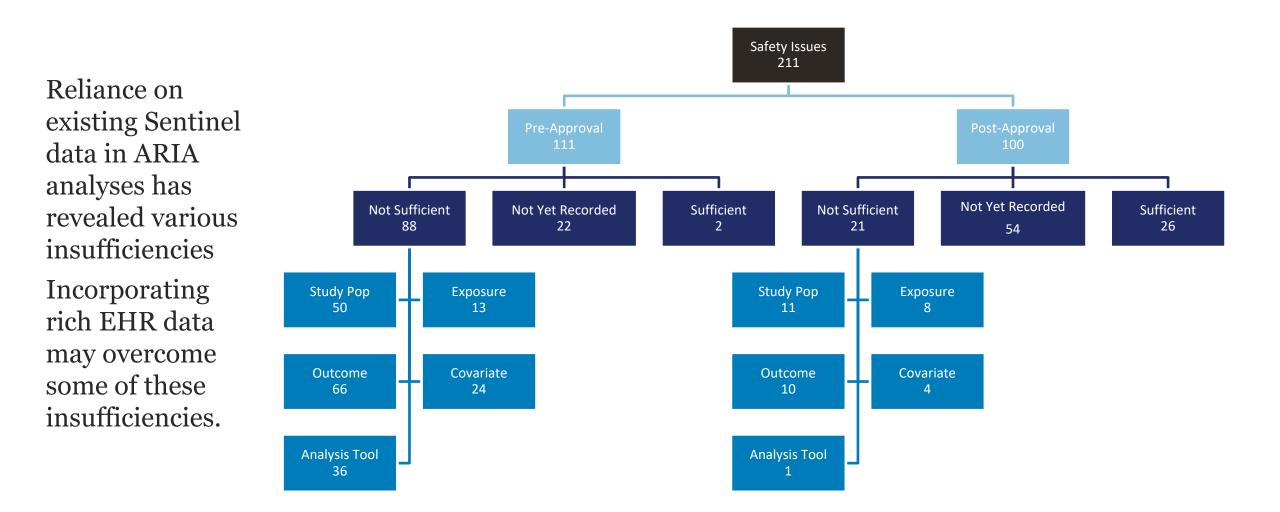
- Motivation
 - Role of computable algorithms in Sentinel
 - Limitations of claims data
 - The promise of using EHR data and machine learning (ML) methods
- Scalable algorithm *development*
- Filters in outcome identification
 - Role in outcome identification
 - Data-driven, high-sensitivity filtering (HSF)

Motivation: Role of computable algorithms in Sentinel

Allow safety issues to be investigated rapidly, at ~low cost ARIA = the Active Risk Identification and Analysis system



Motivation: Limitations of structured claims data



This slide courtesy of Michael Nguyen

Motivation: Promise of EHR data + ML methods

Accurate identification of some outcomes/covariates requires information only available in EHR data and clinical notes

- Ex. 1: Identification of acute pancreatitis requires labs data (lipase)
- Ex. 2: Key facts for identifying anaphylaxis are absent in claims data but can be extracted from EHRs via natural language processing (NLP)

Relationships between rich features/predictors and outcomes are often nonlinear, making data-driven ML modeling advantageous

• Ex.: Computable algorithms for identifying anaphylaxis based on ML methods consistently outperformed simpler linear models

Scalable algorithm *development*

Efficiency: At reasonable **cost** in a ~short **time** frame

• Cost/time drivers are personnel salaries, gold standard creation

Portability: Easily implemented in diverse real-world settings

- Sharable tools/packages
- Minimal/no local tailoring needed
- Anticipates & accommodates *local* systems & data

Replicability

- Comparable results across settings
- Comparable results across time

Efficiency + Portability + Replicability = Scalable algorithm development

Scalable algorithm development is needed to:

- Keep pace with demand for safety analyses
- Produce results at reasonable cost

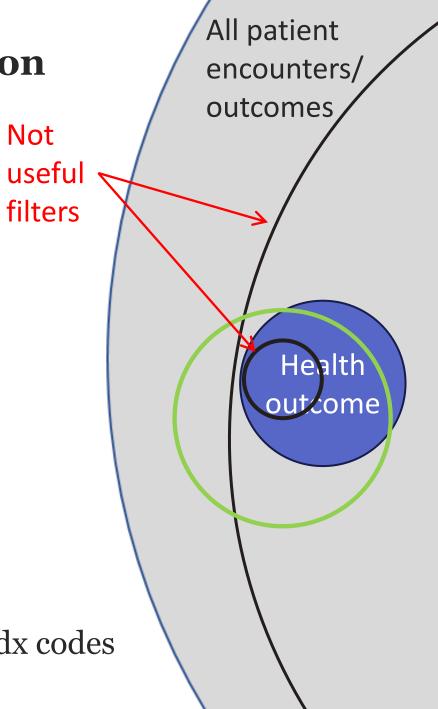
Filters: Their role in outcome identification

Filters are:

- Expert-specified sets of healthcare data, e.g., diagnosis, procedure, or medication codes
- That *presumptively* identify patients w/ the outcome
- For which true case status will be *determined by a computable algorithm*

Useful filters have:

- Strong face validity
- Simple and generalizable definitions
- High sensitivity (to minimize selection bias)
- Reasonable specificity (to limit data collection burden)
- Traditional example: COVID-19-specific ICD-10 dx codes



Objective:

Improve sensitivity of a "traditional" filter

HSFs use data-driven analytics to identify additional filtering codes:

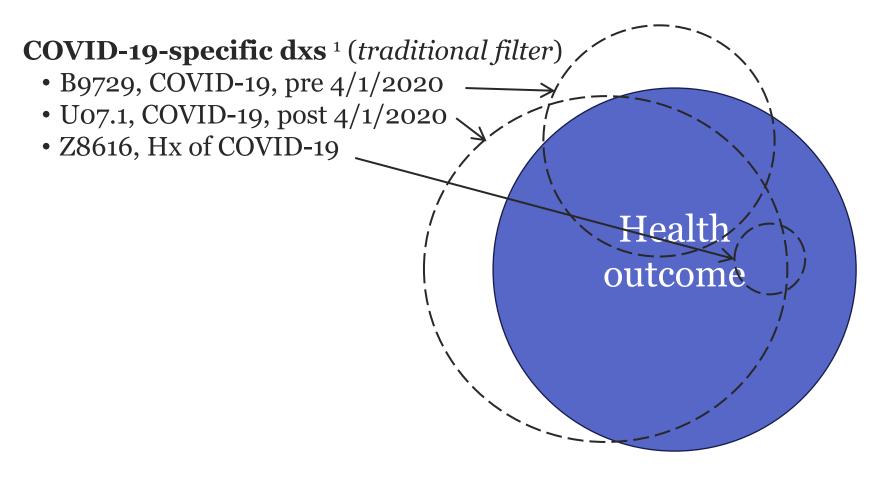
- To identify patients/events overlooked by simple/traditional filters,
- With modest increase in overall sample size, and
- With reasonable effort (i.e., reusable tool applied to Sentinel data)

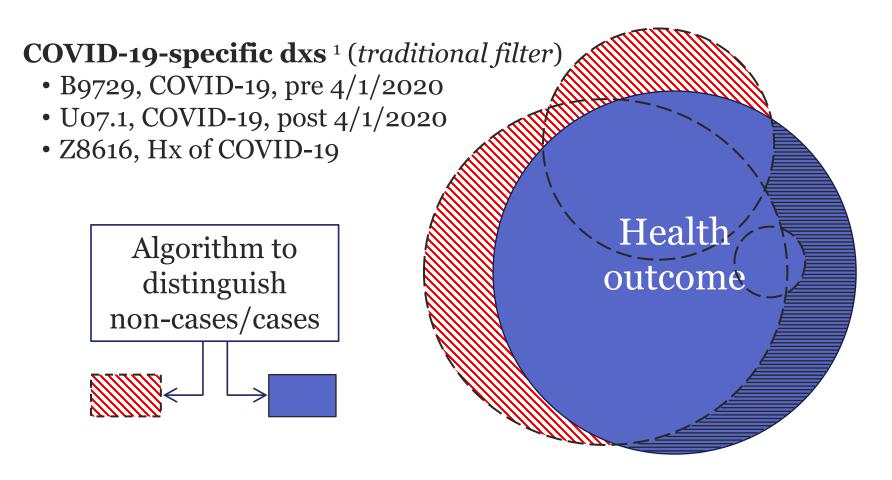
How do HSFs work?

- 1. Divide patients into two groups:
 - *Ever* qualified by the traditional filter
 - $\circ\ \mathit{Never}$ qualified by the traditional filter
- 2. Identify codes that are $\geq 10x$ more common in "Ever" than "Never" patients
- 3. Manually review and retain identified codes with face validity
- 4. Add patients/events w/any HSF code to the presumptive patient/event set

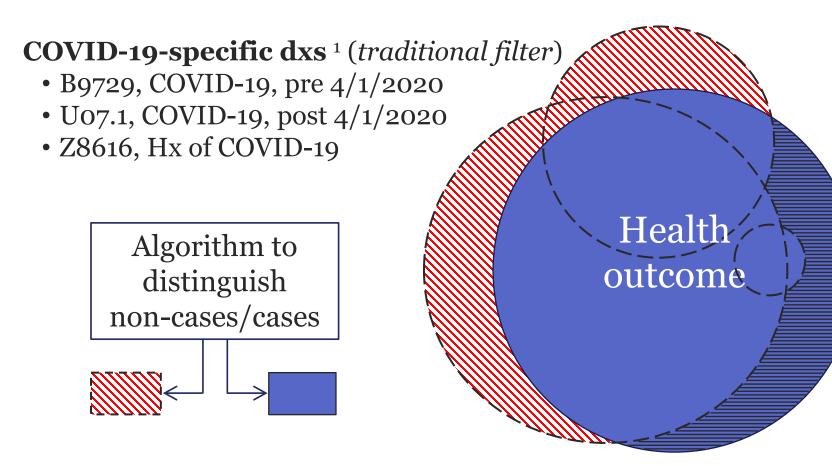
COVID-19-specific dxs¹ (traditional filter)

- B9729, COVID-19, pre 4/1/2020
- U07.1, COVID-19, post 4/1/2020
- Z8616, Hx of COVID-19





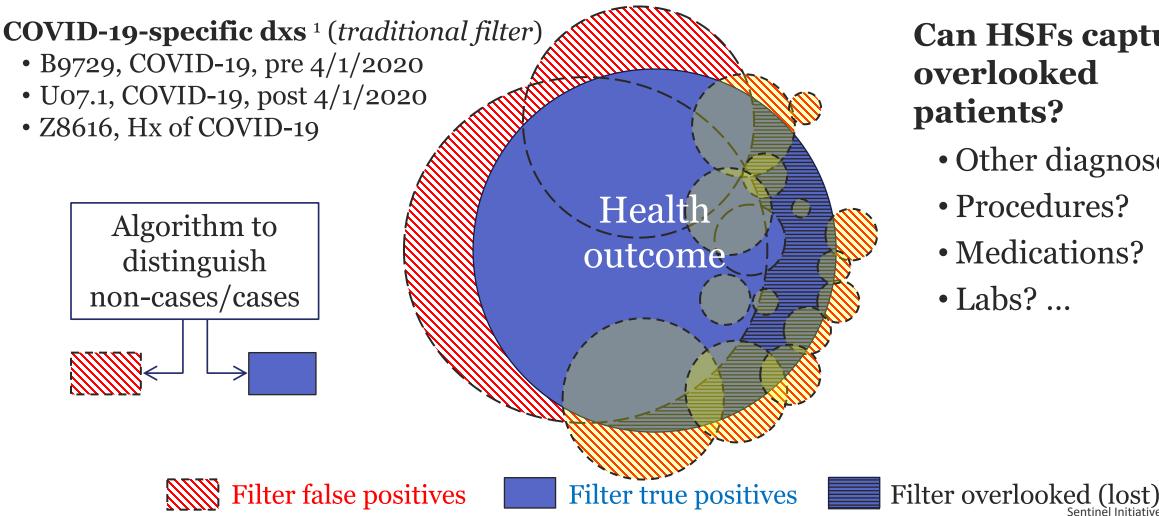
Filter true positives



Can HSFs capture overlooked patients?

- Other diagnoses?
- Procedures?
- Medications?
- Labs? ...

Filter true positives

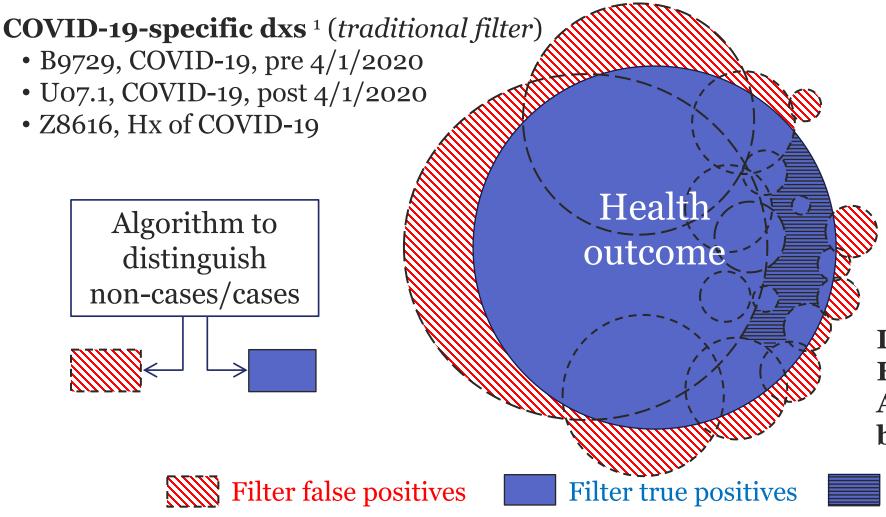


Can HSFs capture overlooked patients?

• Other diagnoses?

48

- Procedures?
- Medications?
- Labs?



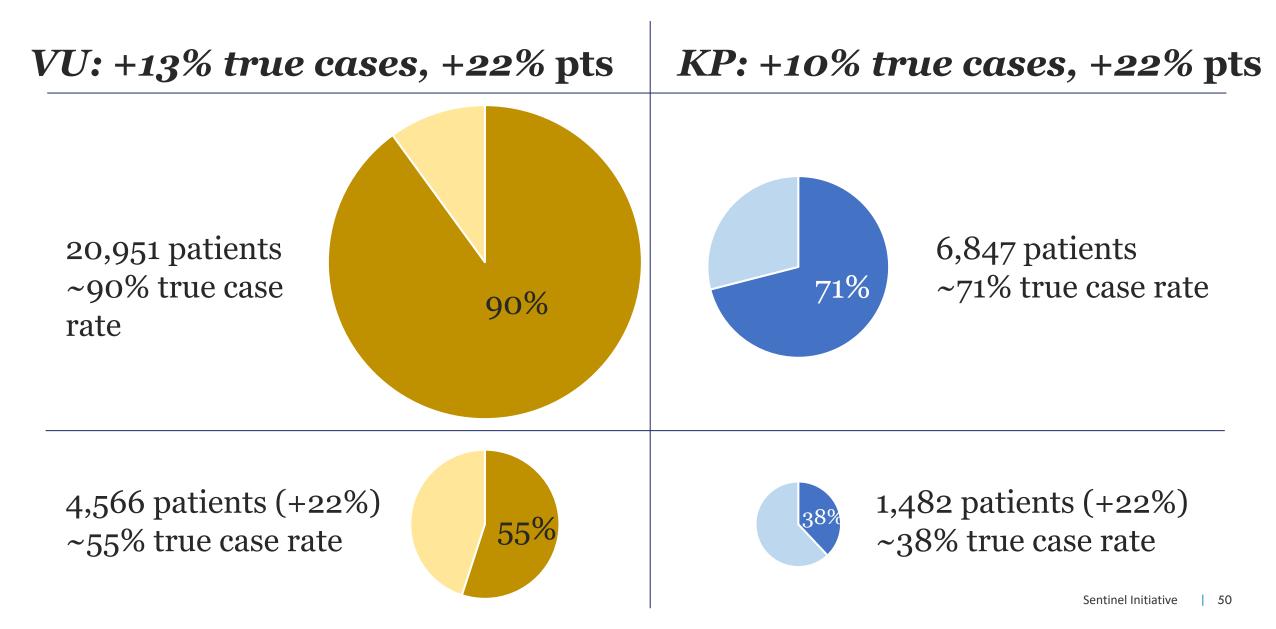
Can HSFs capture overlooked patients?

- Other diagnoses?
- Procedures?
- Medications?
- Labs? ...

If so ... How many (sensitivity)? At what cost (data burden)?

49

Results: COVID-19 high-sensitivity filtering (HSF)



Thank You!

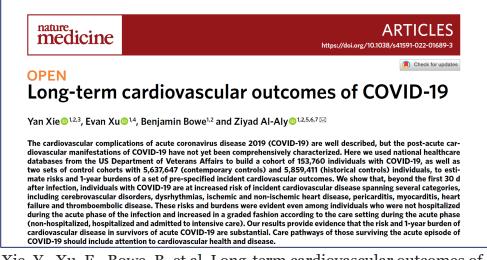
David S. Carrell, PhD Kaiser Permanente Washington Health Research Institute Seattle, WA david.s.carrell@kp.org

Extras

COVID-19 as a covariate in safety studies?

Nature Medicine

"... beyond the first 30 d after infection, individuals with COVID-19 are at increased risk of incident cardiovascular disease spanning several categories, including cerebrovascular disorders, dysrhythmias, ischemic and nonischemic heart disease, pericarditis, myocarditis, heart failure and thromboembolic disease."



Xie, Y., Xu, E., Bowe, B. et al. Long-term cardiovascular outcomes of COVID-19.

Nat Med (Feb. 7, 2022). https://doi.org/10.1038/s41591-022-01689-3

• JAMA

"Physicians should consider a history of COVID-19 as a cardiovascular disease risk."

News & Analysis

Medical News & Perspectives | QUICK UPTAKES

The COVID Heart–One Year After SARS-CoV-2 Infection. Patients Have an Array of Increased Cardiovascular Risks

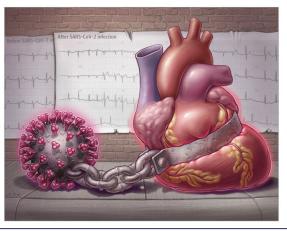
Jennifer Abbasi

The Backstory

n analysis of data from nearly 154 000 US veterans with SARS-CoV-2 infection provides a grim preliminary answer to the question: What are COVID-19's long-term cardiovascular outcomes? The study, published in Nature Medicine by researchers at the Veterans Affairs (VA) St Louis Health Care System found that in the year after recovering from the illness's acute phase, patients had increased risks of an array of cardiovascular problems, including abnormal heart rhythms, heart muscle inflammation, blood clots, strokes, myocardial infarction, and heart failure. What's more, the heightened risks were evident even among those who weren't hospitalized with acute COVID-19.

At the beginning of the pandemic, the re-

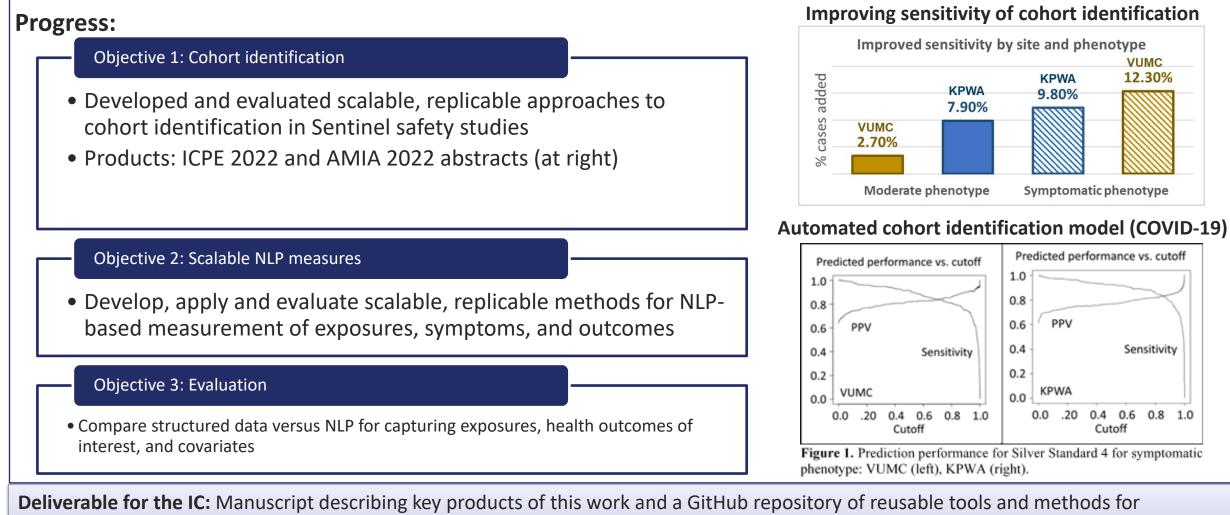
search team resolved to identify and ad-



Abbasi J. The COVID Heart-One Year After SARS-CoV-2 Infection, Patients Have an Array of Increased Cardiovascular Risks. JAMA. Published online March 02, 2022. doi:10.1001/jama.2022.2411

FE2: NLP tools for cohort identification, exposure assessment, covariate ascertainment ("Scalable NLP")

Goal: In two heterogeneous settings develop and validate scalable and reusable NLP tools for leveraging EHR data to address known insufficiencies in existing data and methods to support FDA safety surveillance studies



incorporating scalable NLP into Sentinel safety studies

High-sensitivity COVID-19 filter results -- VUMC

VUMC Filter rank	patients identified by COVID-19 "base" and "hig COVID-19 filter category	N patients	SF) filters during N patients with this filter and no higher rank filters			
1st	Diagnosis of U07.1 "COVID-19" (base #1)	20,840	20,840	80%		
2nd	Any of 5 other COVID-19 diagnoses (base #2)	1,898	111	0.43%		
3rd	HSF diagnoses (any of 24)	7,264	3,976	15%		
4th	HSF procedures (any of 10)	1198	37	0.14%		
5th	HSF medications (any of 4)	473	181	0.70%		
6th	HSF problem list in EHR (any of 5)	9,222	892	3.4%		
Total 26,037 100%						
If we included a 7th filter, PCR+ COVID-19 test (only), 8,825 (+34%) new patients would be added.						

High-sensitivity COVID-19 filter results -- KPWA

KPWA Filter rank	patients identified by COVID-19 "base" and "hig COVID-19 filter category		N patients with this filter and			
1st	Diagnosis of U07.1 "COVID-19" (base #1)	15,678	15,678	81%		
2nd	Any of 5 other COVID-19 diagnoses (base #2)	1,498	166	1%		
3rd	HSF diagnoses (any of 24)	5,041	2789	14%		
4th	HSF procedures (any of 10)	550	8	0.04%		
5th	HSF medications (any of 4)	91	84	0.4%		
6th	HSF problem list in EHR (any of 5)	4,845	607	3%		
Total	Total 19,332 100%					
If we included a 7th filter, PCR+ COVID-19 test (only), 4,737 (+25%) new patients would be added.						

Automated Methods for Developing Computable Phenotypes

Lessons Learned from : Advancing scalable natural language processing approaches for unstructured electronic health record data

Workgroup Leads: Joshua C. Smith & David S. Carrell

Phenotyping

Computable phenotype algorithms typically:

- Require time-intensive expert curation and feature engineering
- Require manually-annotated gold- standard training sets
- Result in high cost and limited scalability.

PheNorm, and similar automated approaches:

- Based on natural language processing (NLP), machine learning, and (low-cost) silver-standard training labels
- Have been demonstrated to perform well for various chronic health conditions.

We evaluated PheNorm for use with *acute* conditions (COVID-19)

• PheNorm currently being applied to acute pancreatitis in another IC project

Rationale for exploring automating phenotyping methods

Scalability

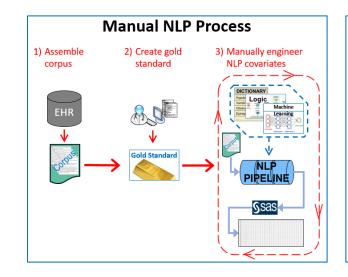
• Manual approach is burdensome/slow, requires substantial expertise

Replicability

• Reduced operator-dependence

Hybrid solutions?

• PheNorm \rightarrow PheCAP \rightarrow blended methods?



Manual chart review by experts to discover relevant NLP covariates
Nose: No denechoa: Mouth: Mol swalling, Nock: Not infrader, Stople, no lymphadenopathy Lymphatic: No lymphadenopathy noted. Cardiovascular: Normal heart rate, normal rhythm, no murmurs, no rubs, no gallops. Intact distal pulses, no tendemess, no cyanosis, no clubbing. Respiratory: Normal heart rate, normal rhythm, no murmurs, no rubs, no gallops. Intact distal pulses, no tendemess, no cyanosis, no clubbing. Respiratory: Normal heart rate, normal rhythm, no murmurs, no rubs, no gallops. Intact distal pulses, no tendemess, no cyanosis, no clubbing. Respiratory: Normal heart rate, normal interpretatory distress, no wheezing: Abdomen: Bowle sounds are present. Abdomen is soft, no tenderness, no masses, no rebound or guarding. No organomegaly. No hernia. Glu: the CAV_tendemess. Bladder is nontender and not distended. Skin: Explayma made about the face and minimally to the hands: Babt: No tendemess Muschockseltat: No tendemess to palpation or major deformities noted. No back or cervical spine tendemess. No edema.
Pt after her CTA ABdomen she develop allergic /anaphylactic reaction in ED with nausea/vomting and tachycardia and hypotensive and she became hypoxic, even so she had many cl with contrast without any reactions
She received multiple rounds of epinephrine, benadryl ,decadron ,pepcid
SHE FEEL MUCH BETTER NOW except some dizziness when she walk

Manually	curated s	tructured	covariate
	Version in the second s	Maximum Max Max Max Max 1 Max Max <th></th>	
			MAXIMUM Mathematical State Mathematical State MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAX
2012 2014 (1997) 2015 (1997) 2016 (1997) 2016 (1997)	Table Table <th< td=""><td>101 101<td>Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular</td></td></th<>	101 101 <td>Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular</td>	Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular Marcine and Particular

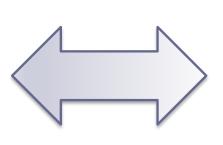
Manually Curate NLP Dictionaries							
Anaphylaxis co	Anaphylaxis concepts in the NLP dictionary (N terms)						
BRADYCARDIA (13) CARDIACARRHYTH (8) CARDIOCOLLAPSE (2) COLLAPSE (2) END ORGAN (2) HYPOTENSION (77) PALPITATIONS (3) SHOCK (3) SYNCOPE (30) ABDOPAIN (3) VOMIT (1) AILTERE OMENTATION (1) ALTERE MENTATION (1) ALTERE MENTATION (1) BRACHT (6) BRONCHOSPASM (1) CHEST DISCOMPORT (2) CHEST TIGENTNESS (9)	BRADYCARDIA (13) 						
REDUCED BLOOD PRESSURE GASTROINTESTINAL RESPIRATORY COMPROMISE SKIN/MUCOSAL OTHER							

Rationale for exploring automating phenotyping methods

Continuum of development approaches

Manual development

- *Expert*-driven
- *Manual* engineering
- Heavy reliance on *gold standard labels*
- Substantial operator dependence
- Slow



Automated development

- Data-driven
- Automated engineering
- Heavy reliance on silver standard labels
- Reduced operator dependence

• Fast

- Automated feature engineering (AFEP)¹
- Surrogate-assisted feature extraction (SAFE)²
- Phenotype algorithm normalization (PheNorm)³
- Phenotyping common approach (PheCAP)⁴
- 1. Yu et al. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources. JAMIA 2015
- 2. Yu et al. Surrogate-assisted feature extraction for high-throughput phenotyping. JAMIA 2017
- 3. Yu et al. Enabling phenotypic big data with PheNorm. JAMIA 2018
- 4. Zhang et al. High-throughput phenotyping with EMR data using a common semi-supervised approach (PheCAP). Nature Protocols. 2019

Automated modeling: PheNorm

Sheng Yu, Yumeng Ma, Jessica Gronsbell, Tianrun Cai, Ashwin N Ananthakrishnan, Vivian S Gainer, Susanne E Churchill, Peter Szolovits, Shawn N Murphy, Isaac S Kohane, Katherine P Liao, Tianxi Cai. **Enabling phenotypic big data with PheNorm**. J Am Med Inform Assoc. **2018** Jan 1;25(1):54-60.

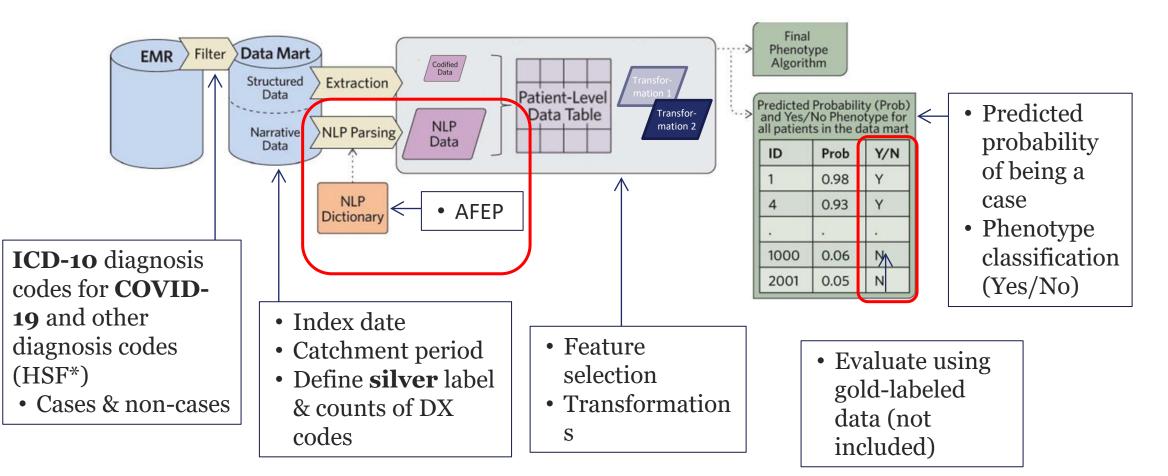
Research and Applications

Enabling phenotypic big data with PheNorm

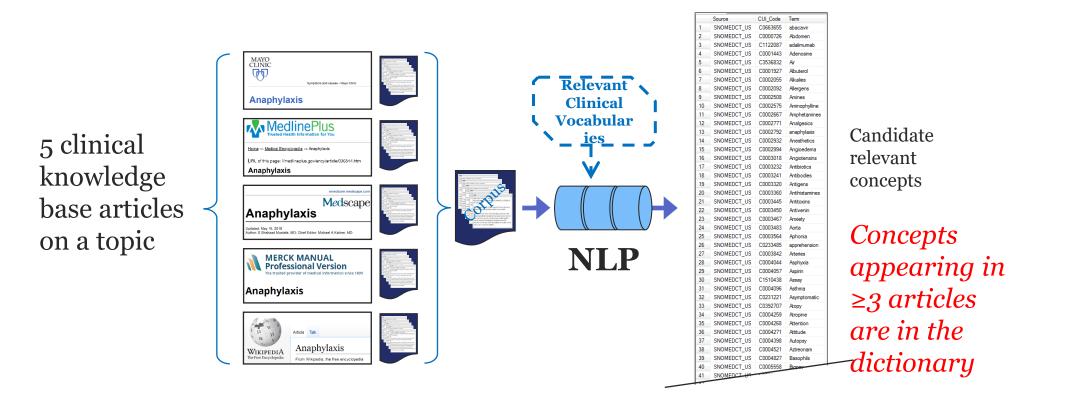
Sheng Yu,^{1,2} Yumeng Ma,³ Jessica Gronsbell,⁴ Tianrun Cai,⁵ Ashwin N Ananthakrishnan,⁶ Vivian S Gainer,⁷ Susanne E Churchill,⁸ Peter Szolovits,⁹ Shawn N Murphy,^{7,10} Isaac S Kohane,⁸ Katherine P Liao,¹¹ and Tianxi Cai⁴ Downloaded from https://acad

Overview of PheNorm/PheCap

Zheng et al. High-throughput phenotyping with electronic medical record data using a common semi-supervised approach (PheCAP). Nat protocols. 2019 Dec;14(12):3426-3444. doi: 10.1038/s41596-019-0227-6. Epub 2019 Nov 20.



Automating NLP dictionary creation (AFEP)



Yu et al. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources. JAMIA 2015

Running PheNorm

AFEP Dictionary

• 159 CUIs extracted from 6 articles on COVID-19

Data/text catchment Period

• Index date +/-30 days

Input Data

- KPWA: 143,584 notes from 8,329 patients
- VUMC: Approximately 1.1 million notes from 24,355 patients

Process notes using MetaMapLite

• Transform counts of each NLP-extracted concept from the AFEP dictionary into input vectors for PheNorm

Running PheNorm

Silver Standard Labels

- **1. Structured Label** count of days with U07.1 diagnosis code (COVID-19)
- 2. Structured Label counts of six COVID-related CUIs
- **3.** NLP Label Cumulative count of "COVID-19" mentions in patients' charts
- **4. NLP Label** number of <u>days (KPWA)</u> or <u>notes (VUMC)</u> in which a COVID-19 concepts was mentioned in patients charts
- Apply PheNorm, evaluate

COVID-19 Phenotype

Evidence of COVID-19 infection

Definite or highly probable infection

- Lab data or clinical note indicates patient was PCR-positive **or**
- Assertion the patient has COVID-19 in a free text statement **or**
- Strong evidence of proximal exposure and serologic evidence of prior infection

Probable or possible infection

- Patient symptoms are consistent with a diagnosis of COVID-19
- Absence of an explicit *alternative* diagnosis and/or absence of a statement that a non-COVID-19 cause is more likely
- Strong evidence of proximal exposure

Unlikely infection

- Explicit *alternative* diagnosis or statement that a non-COVID-19 cause is more likely
- Absence of symptoms consistent with a diagnosis of COVID-19 *and* absence of lab data or clinical note indicating a positive PCR test

Not infected

• No indication in the EHR of infection [i.e., symptoms, exposure, and/or labs/serology] during the relevant time window) EHR appears to thoroughly document the patient's care during the relevant time window

Insufficient Information

• EHR appears <u>not</u> to be a reasonably complete source of documentation about the patient's care during the relevant time window

Severity of illness scale (NIH)

SEVERITY LEVEL	SIGN/SYMPTOM
Asymptomatic	No symptoms
Mild	Fever (>=100.4F)
	Cough
	Sore throat
	Malaise/fatigue
	Headache
	Muscle pain
	Nausea
	Vomiting
	Diarrhea
	Loss of sense of taste or smell
Moderate	Shortness of breath (SpO2 >=94%)
	Dyspnea (SpO2 >=94%)
	Abnormal chest imaging (SpO2 >=94%)
Severe	SpO2 <94%
	PaO2/FiO2* <300 mm Hg
	Respiratory freq >30 breaths/min
	Lung infiltrates >50%
Critical	Respiratory failure
	Septic shock
	Multiple organ dysfunction

COVID-19 phenotype chart review results

Gold standard chart review results by study site and COVID-19 phenotype definition					
Study site	COVID-19 phenotype definition	Chart review result	Number of charts	Percent of charts	
	-	Non-case	334	69%	
VUMC		Case	149	31%	
(N=483)		Non-case	188	39%	
	severity	Case	295	61%	
	Moderate+	Non-case	315	72%	
KPWA	severity	Case	122	28%	
(N=437)	Mild+	Non-case	168	38%	
	severity	Case	269	62%	

Chart samples were stratified to represent all filter types (not a random sample of all eligible charts)

PheNorm Results – Moderate+ Phenotype

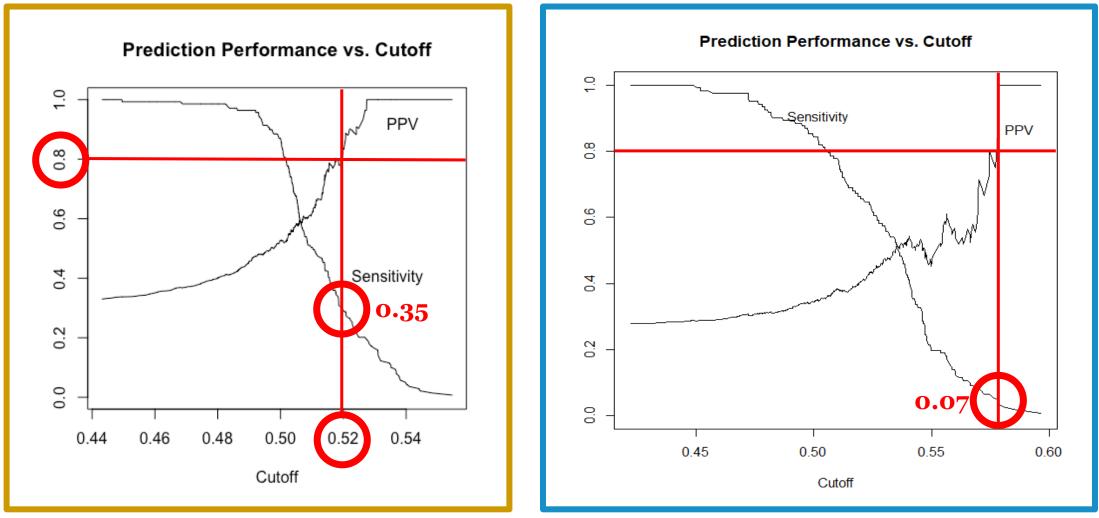
Site	Silver Standard	Phenotype	AUC	Sensitivity at PPV=0.8
KPWA	1 - U07.1 Days	Moderate+	0.700	0.07
VUMC	1 - U07.1 Days	Moderate+	0.814	0.29
KPWA	2 - Six-CUI Days	Moderate+	0.695	0.05
VUMC	2 - Six-CUI Days	Moderate+	0.841	0.47
KPWA	3 - COVID Mentions	Moderate+	0.674	0.00
VUMC	3 - COVID Mentions	Moderate+	0.775	0.29
KPWA	4A - CUI Days	Moderate+	0.695	0.00
VUMC	4B - CUI Notes	Moderate+	0.768	0.27

PheNorm Results – Symptomatic COVID-19

Site	Silver Standard	Phenotype	AUC	Sensitivity at PPV=0.8
KPWA	1 - U07.1 Days	Symptomatic	0.773	0.89
VUMC	1 - U07.1 Days	Symptomatic	0.901	0.99
KPWA	2 - Six-CUI Days	Symptomatic	0.766	0.88
VUMC	2 - Six-CUI Days	Symptomatic	0.899	0.95
KPWA	3 - COVID Mentions	Symptomatic	0.864	0.98
VUMC	3 - COVID Mentions	Symptomatic	0.887	0.94
KPWA	4A - CUI Days	Symptomatic	0.892	0.98
VUMC	4B - CUI Notes	Symptomatic	0.875	0.95

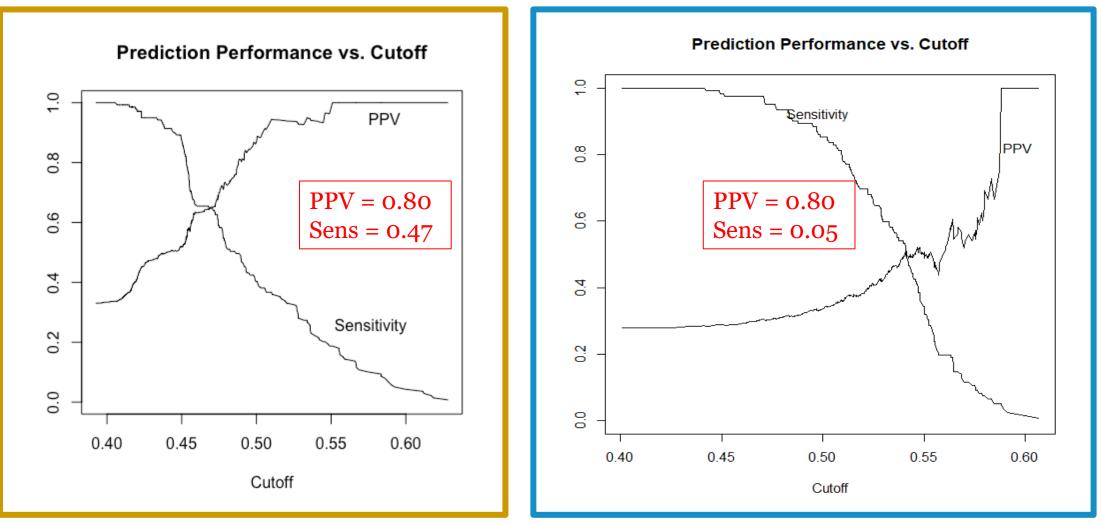
Prediction Performance

Moderate+ phenotype, Silver #1 – U07.1 Days



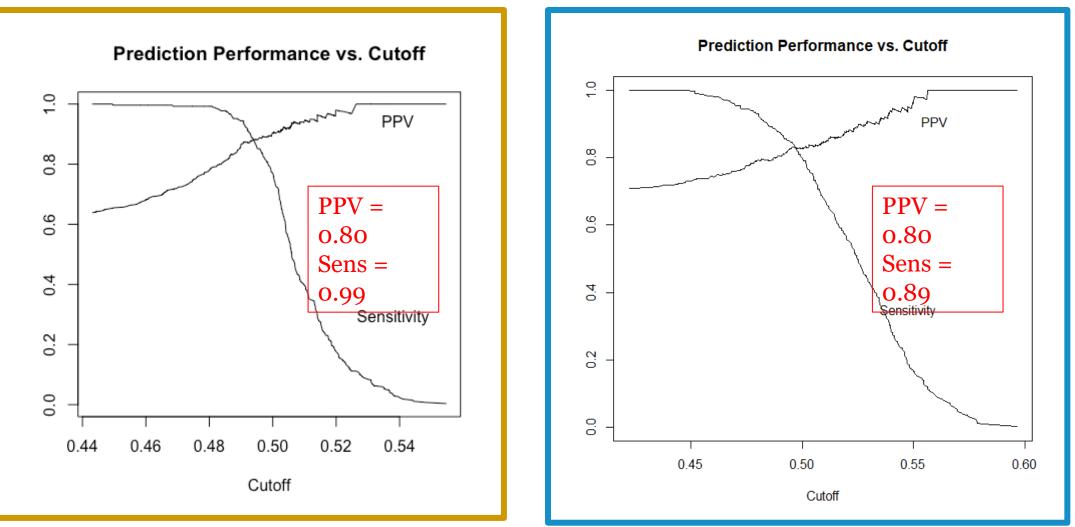
Prediction Performance

Moderate+ phenotype, **Silver #2 – "Six-CUI" Days**



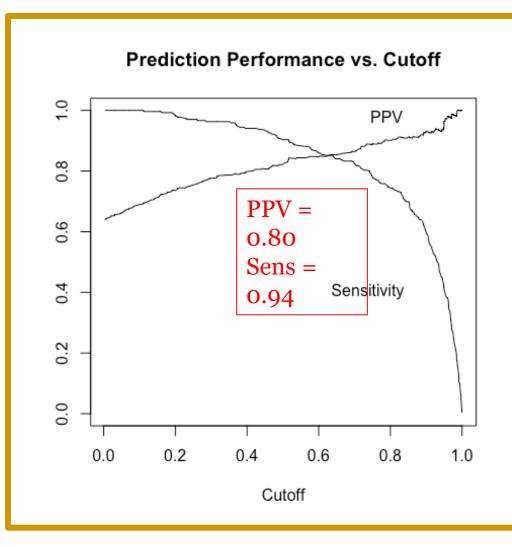
Prediction Performance

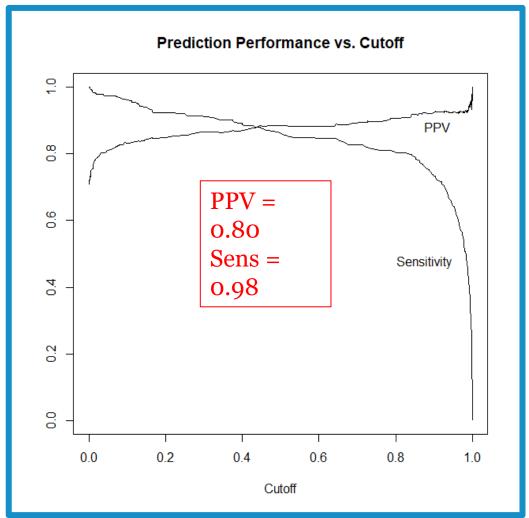
Mild+ phenotype, Silver #1 – U07.1 Days



Prediction Performance

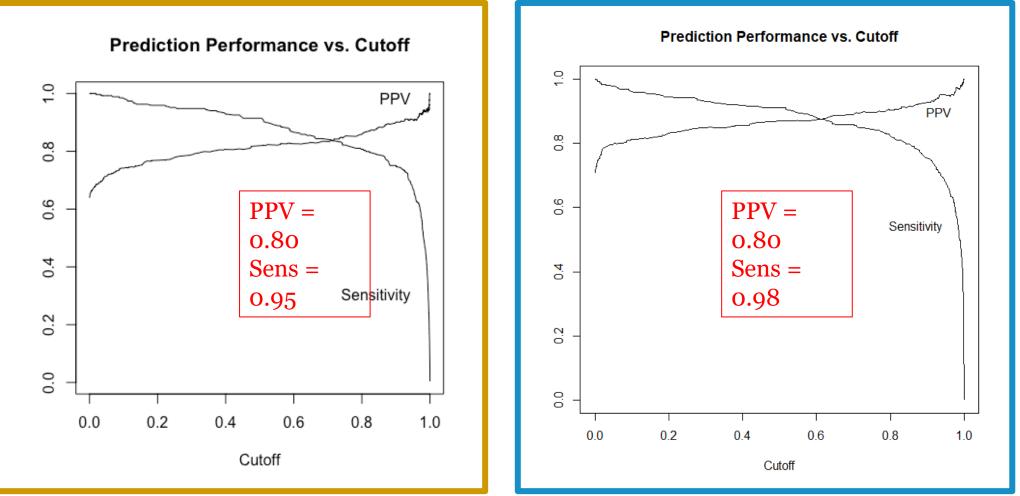
Mild+ phenotype, **Silver #3** – COVID-19 Mentions





Prediction Performance

Mild+ phenotype, **Silver #4** – COVID Notes / COVID Days



Take-home messages

Relevance to Sentinel safety surveillance

- *Relatively modest effort* was needed to implement this approach
- *Replication* in (two) heterogeneous settings was straightforward
- May be relevant for both chronic and acute health conditions

Performance of automated models

- "Fit" between *silver label* and phenotype definition appears important
- "Fit" between *source data* and *phenotype definition* appears important (e.g., inpatient data needed for moderate+ severity)
- When performance is less than desirable, automated approaches may still be a useful **starting point** for model development
- Hybrid approaches automated and manually-curated features
 - PheCap and Multimodal Automated Phenotyping (MAP)

More information

Data-driven automated classification algorithms for acute health conditions: Applying PheNorm to COVID-19 disease

• Abstract submitted for AMIA 2022 Annual Symposium

Joshua Smith, PhD (VUMC) David Carrell, PhD (KPWA) joshua.smith@vumc.org <u>david.s.carrell@kp.org</u>

Large-scale Phenotyping With Natural Language Processing

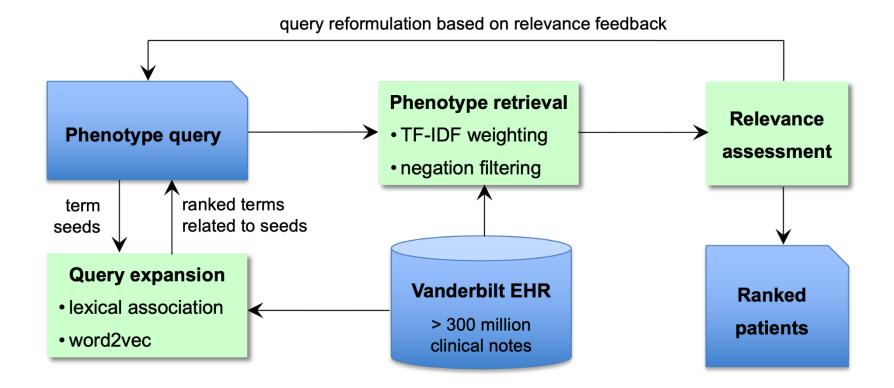
Cosmin Adrian Bejan, PhD

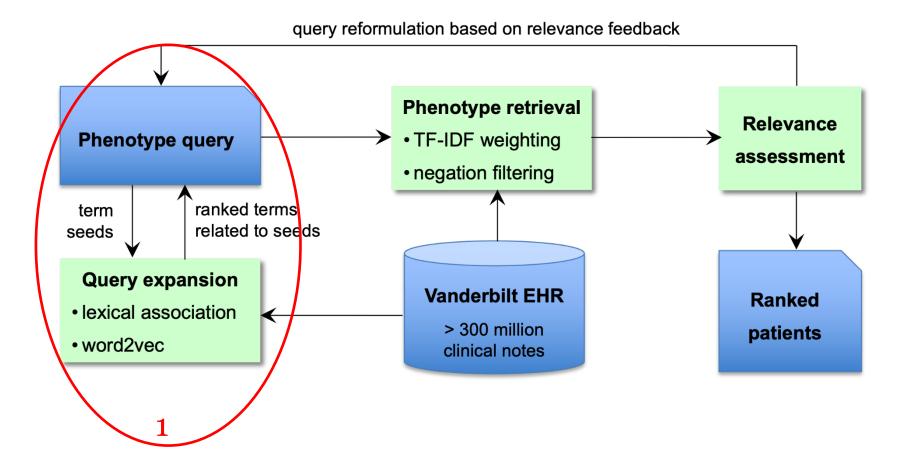
Department of Biomedical Informatics

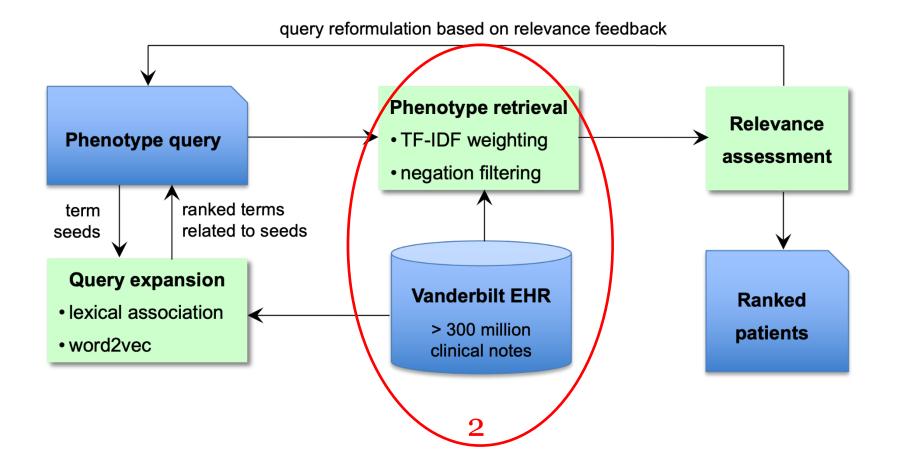
MEDICAL CENTER

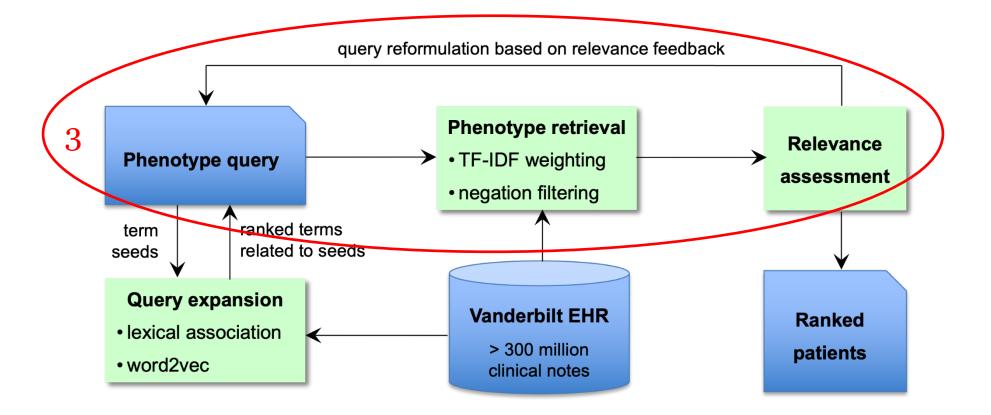
Desiderata for NLP-based phenotyping

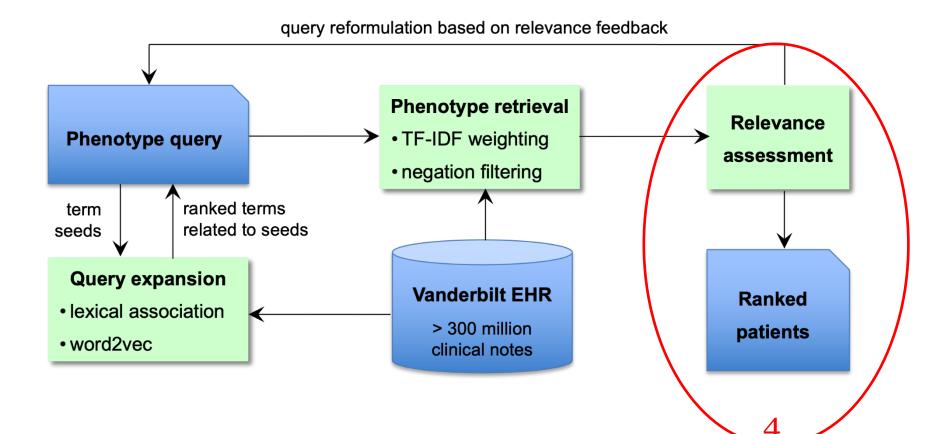
- Improve phenotype identification based on structured data
- Analyze large volumes of clinical notes
- Data-driven generation of phenotype profiles
- Minimize the amount of chart review
- Generalize across phenotypes
- **Replicate** across EHR repositories











Applications

Social determinants of health

- Homelessness (VUMC)
- Adverse Childhood Experiences (VUMC)
- Homelessness (OHSU)
- Social Isolation (OHSU)
- Financial Insecurity (OHSU)
- Chronic Stress (OHSU)

Suicide phenotypes

- Suicidal Ideation (VUMC)
- Suicide Attempt (VUMC)
- Suicide Attempt incidence

(Bejan et al., <i>JAMIA</i> 2018)
(Dorr, Bejan et al., <i>MedInfo</i> 2019)
(Bejan et al., <i>medRxiv</i> 2022)
(Walsh et al., <i>submitted</i>)

Data-driven methods for extracting phenotype profiles

Homelessness	rank[cosine(homeless+homelessn)] rank[cosi	ne(homeless, <i>w</i>)]	<pre>rank[cosine(homelessness, w)]</pre>		
	context size=5	context size=15	context size=5	context size=15	context size=5	context size=15	
	1 homeless	homeless	prison	jail	polysubstance	homeless	
	2 homelessness	homelessness	jail	homelessness	homeless	polysubstance	
	3 prison	methamphetamine	ex-wife	prison	sober	methamphetamine	
	4 sober	polysubstance	girlfriend	girlfriend	abuser	sober	
	5 jail	jail	homelessness	sober	schizophrenia	schizo-affective	
	6 abuser	sober	abuser	methamphetamine	methamphetamine	schizophrenia	
	7 prostitution	prison	live-in	dui	abuse/dependence	prostitute	
	8 polysubstance	prostitute	sober	imprisoned	poly-substance	jail	
	9 ex-wife	ecstasy	ex-husband	ex-husband	prostitution	overdoses	
	10 ex-husband	mtmhi	fiancee	burglary	multi-substance	mtmhi	

Suicide phenotypes

	suicio	de+ suicidal	S	suicide	suicidal		
	context size = 5	context size = 15	context size = 5	context size = 15	context size = 5	context size = 15	
1	suicide	suicide	self-harm	manic	ideation	ideation	
2	suicidal	suicidal	suicidal	ideation	homicidal	homicidal	
3	ideation	ideation	paranoid	suicidal	ideations	ideations	
4	homicidal	homicidal	homicide	self-harm	paranoia	suicidality	
5	self-harm	ideations	ideation	suicided	suidical	paranoia	
6	ideations	manic	suicide/homicide	mania	suicidality	suidical	
7	paranoia	self-harm	self-mutilation	homicidal	self-harm	delusional	
8	paranoid	mania	paranoia	s/h	delusional	self-harm	
9	suidical	suicidality	self-harmplan	self-mutilation	paranoid	thoughts	
10	suicidality	paranoia	manic	ptsd	suicidial	mania	

Building phenotype queries (I)

ACE

- child abuse
- sexual abuse
- child neglect
- childhood trauma
- child protective service
- physical abuse
- psychological abuse
- verbal abuse
- poverty
- food insecurity
- cps supervisor
- cps report
- cps worker
- cps investigation

Homelessness

- homeless
- homelessness
- shelter
- unemployed
- jobless
- incarceration

Building phenotype queries (II)

Suicidal Ideation

suicid(al|e) idea(tion|s)*

suicid(al|e) thought(s)*

thought(s)* of suicide

(wish|wishes|intent|intend|intends|plans) to commit suicide

(want|wish) (s|ing|es)* to die

(thoughts|think|want|wish) (s|ing|es)* (of|to|about) (take|end) (ing)* (my|his|her|their) (own)* life

(thoughts|think|want|wish) (s|ing|es)* (of|to|about)

 $\label{eq:linear} (kill|shot|shoot|hang|poison|asphyxiat|asphyxiat|mutilate|mutilat|harm|overdose|overdos|cut|cutt|gas|gass|slash) (ing)* (myself|himself|herself|themself)$

(thoughts|think|want|wish) (s|ing|es)* (of|to|about) (slit|slitt|cut|cutt|slash) (ing)* (my|his|her|their|the)* (wrist|arm|throat)

feel(s|ing) (very)* suicidal

(thoughts|think|want|wish) (s|ing|es)* (of|to|about) (jump|jumping) off (a|the|interstate|my|his|her|their)* (bridge|building|balcony|window|roof)

(thoughts|think|want|wish) (s|ing|es)* (of|to|about) (jump|jumping) out of (a|the)* moving (vehicle|car)

(thoughts|think|want|wish) (s|ing|es)* (of|to|about) (jump|jumping) from a moving (vehicle|car)

(thoughts|think|want|wish) (s|ing|es)* (of|to|about) (jump|jumping) out of (his|her|the|a)* (\d+) (nd|rd|th) (floor|story|balcony|window)

(thoughts|think|want|wish) (s|ing|es)* (of|to|about) (jump|jumping) in front of a (car|truck|train|vehicle)

(thoughts|think|want|wish) (s|ing|es)* (of|to|about) (jump|jumping) into interstate

(thoughts|think|want|wish) (s|ing|es)* (of|to|about) (jump|jumping) out of (a|the|his|her)* (window|balcony)

Building phenotype queries (III)

Suicide Attempt

suicid(al|e) attempt suicid(al|e) ideation and attempt

(attempted|committed) suicide

(try|tried|tries|trying|attempted|attempts|attempting) (of|to) (take|end) (ing)* (my|his|her|their) (own)* life

(try|tried|tries|trying|attempted|attempts|attempting) (of|to)

(kill|shot|shoot|hang|poison|asphyxiat|asphyxiat|mutilate|mutilat|harm|overdose|overdos|cut|cutt|gas|gass|slash) (ing)* (myself|himself|herself|themself)

(try|tried|tries|trying|attempted|attempts|attempting) (of|to) (slit|slitt|cut|cutt|slash) (ing)* (my|his|her|their|the)* (wrist|arm|throat)

(try|tried|tries|trying|attempted|attempts|attempting) (of|to) (jump|jumping) off (a|the|interstate|my|his|her|their)* (bridge|building|balcony|window|roof)

(try|tried|tries|trying|attempted|attempts|attempting) (of|to) (jump|jumping) out of (a|the)* moving (vehicle|car)

(try|tried|tries|trying|attempted|attempts|attempting) (of|to) (jump|jumping) from a moving (vehicle|car)

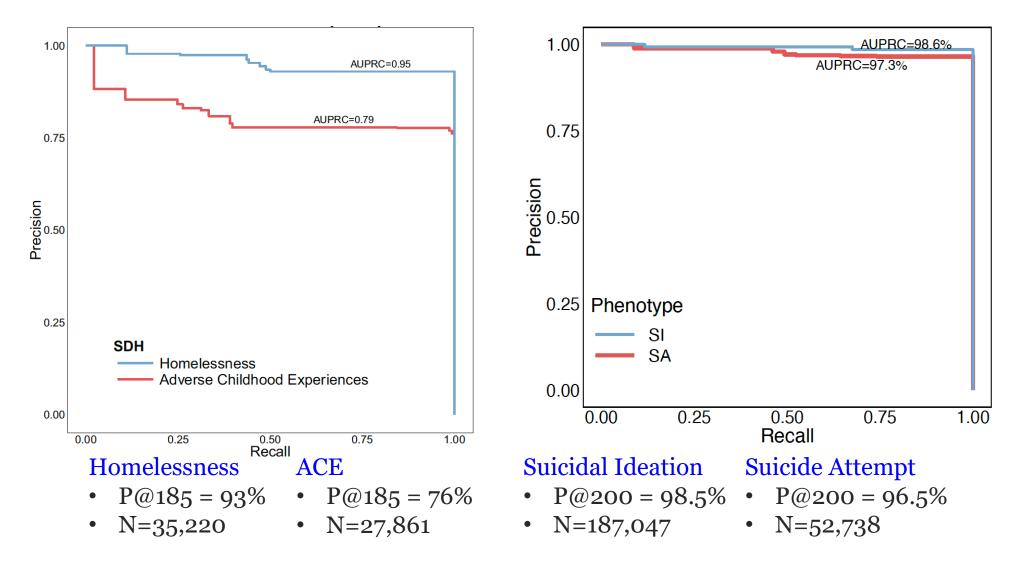
 $(try|tried|tries|trying|attempted|attempts|attempting) (of|to) (jump|jumping) out of (his|her|the|a)* (\d+) (nd|rd|th) (floor|story|balcony|window)$

(try|tried|tries|trying|attempted|attempts|attempting) (of|to) (jump|jumping) in front of a (car|truck|train|vehicle)

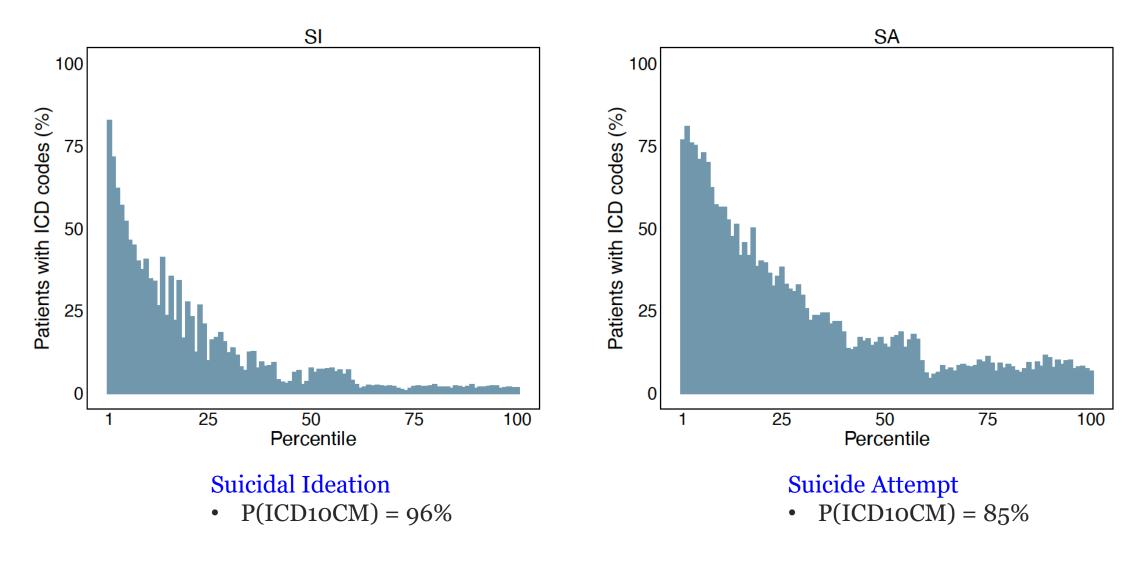
(try|tried|tries|trying|attempted|attempts|attempting) (of|to) (jump|jumping) into interstate

(try|tried|tries|trying|attempted|attempts|attempting) (of|to) (jump|jumping) out of (a|the|his|her)* (window|balcony)

Patient retrieval evaluation (Top K)



ICD-based identification of suicide phenotypes



Rank	Patient ID	NLP score	Case label	К	P@K
1	•	4,717	1	1	100
2	•	•	1	2	100
2	•		1	3	100
3			0	4	75
4	•	↓	?	5	?
			?	6	?
			?		?
			1		?
			?		?
Nrank	•		?	Ν	?

Rank	Patient ID	NLP score	Case label	К	P@K	
1	•	4,717	1	1	100	
2		•	1	2	100	
2	•		1	3	100	
3	•		0	4	75	cases
4	•	\downarrow	?	5	?	
			?	6	?	K = ? & P@K = 70
			?		?	
	•		1		?	
	•		?		?	non-cases
Nrank	•		?	N	?	

Rank	Patient ID	NLP score	Case label	К	P@K	P(NLP)
1	•	4,717	1	1	100	1
2	•	•	1	2	100	1
2	•		1	3	100	1
3	•		0	4	75	.99
4	•	↓	?	5	?	
	•		?	6	?	
	•		?		?	
	•		1		?	
	•		?		?	
Nrank	•		?	Ν	?	0

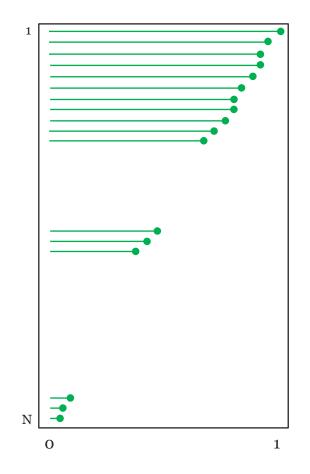
Rank	Patient ID	NLP score	Case label	К	P@K	P(NLP)
1	•	4,717	1	1	100	1
2	•	•	1	2	100	1
2	•		1	3	100	1
3	•		0	4	75	.99
4	•	→	?	5	?	
	•		?	6	?	
	•		?		?	
	•		1		?	
	•		?		?	
Nrank	•		?	Ν	?	0

u ~ Uniform(0, 1)

Rank	Patient ID	NLP score	Case label	К	P@K	P(NLP)
1		4,717	1	1	100	1
2	•	•	1	2	100	1
2	•		1	3	100	1
3	•		0	4	75	.99
4	•	\checkmark	?	5	?	•
	•		?	6	?	
•	•		?		?	
	•		1		?	
•	•		?		?	•
Nrank	•		?	Ν	?	0

Probabilistic labeling of cases

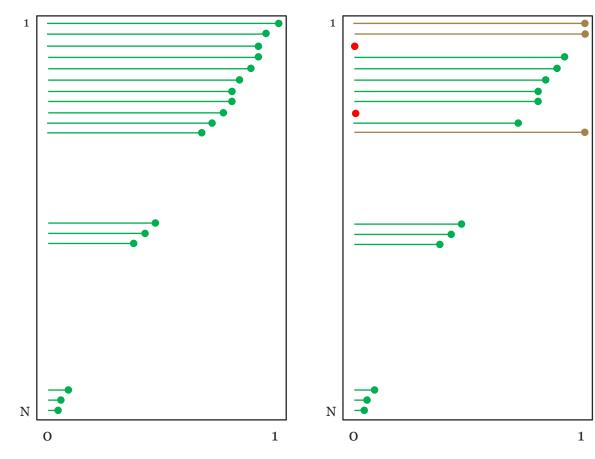
P(NLP)



Probabilistic labeling of cases

P(NLP)

P(NLP) + gold labels



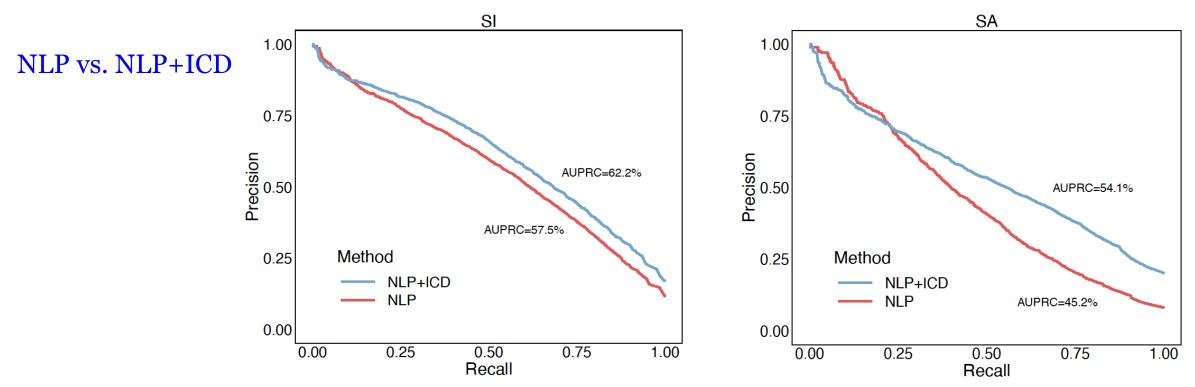
Probabilistic labeling of cases

P(NLP) P(NLP) P(NLP+ICD) + gold labels + gold labels 1 ---Ν N N 0 1 0 1 0 1

Classification of suicide phenotypes

AUPRC improvement based on negation detection:

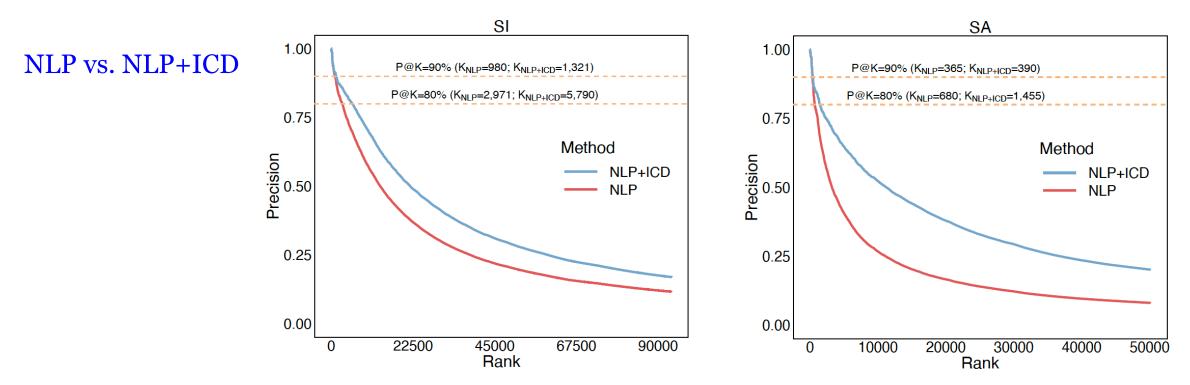
- Suicidal ideation: 2.3% (NLP), 3.7% (NLP+ICD)
- Suicide attempt: 0.7% (NLP), 1.2% (NLP+ICD)



Classification of suicide phenotypes

AUPRC improvement based on negation detection:

- Suicidal ideation: 2.3% (NLP), 3.7% (NLP+ICD)
- Suicide attempt: 0.7% (NLP), 1.2% (NLP+ICD)

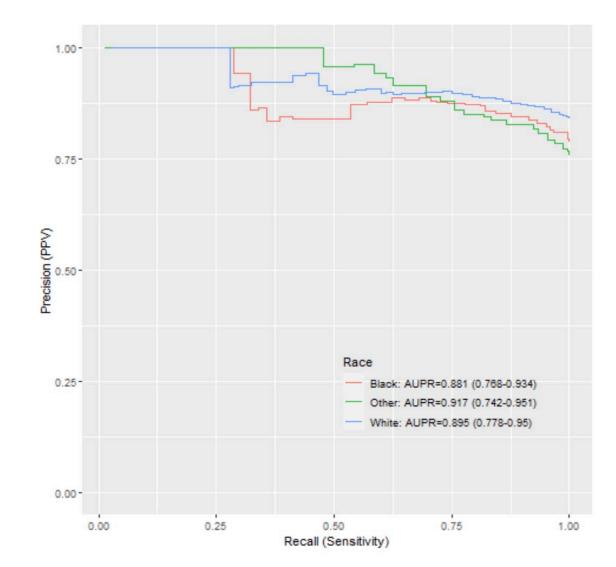


From prevalence to incidence

Phenotype: suicide attempt Retrieval: "day of notes" Output: <patient, day> Weighted sampling of charts Double chart review

Results:

- 263,403 <patient, day> retrieved
- 3,566 reviewed charts
- AUPRC range: 0.88-0.92
- Good inter-rater agreement (K=.89)



Conclusions

- Scalable NLP system for extracting low-prevalence (under-coded and under-reported) phenotypes from EHR
- Proved the generalizability of the method over multiple phenotypes
- Showed replication of results across two EHR repositories
- Data-driven generation of phenotype profiles leveraging unsupervised learning
- Extraction of phenotype cases with high precision
- Diagnostic coding and NLP yield optimal ascertainment
- Demonstrated the feasibility of the method for identifying incidents of suicide attempt

Acknowledgements

VUMC:

- Katelyn Robinson
- Michael Ripperger
- Drew Wilimitis
- Ryan Ahmed
- JooEun Kang
- Theodore J. Morley
- Jhansi Kolli
- John (Jack) Angiolillo
- Douglas Conway
- Robertson Nash
- Jana K. Shirey-Rice
- Loren Lipworth
- Gabriella Papa
- Robert M. Cronin
- Jill Pulley
- Sunil Kripalani
- William Stead
- Shari Barkin
- Kevin B. Johnson
- Joshua C. Denny

VUMC (cont.):

- Michael Matheny
- Aileen Wright
- Qingxia Chen
- Daniel Fabbri
- Douglas M. Ruderfer
- Colin G. Walsh

OHSU:

- David Dorr
- Ana Quinones
- Christie Pizzimenti
- Sumeet Singh
- Matt Storer

Harvard:

- Sruthi Adimadhyam
- Shamika More
- Adee Kennedy

FDA:

- Andy D. Mosholder
- Sai H. Dharmarajan
- Danijela Stojanovic

KPWA:

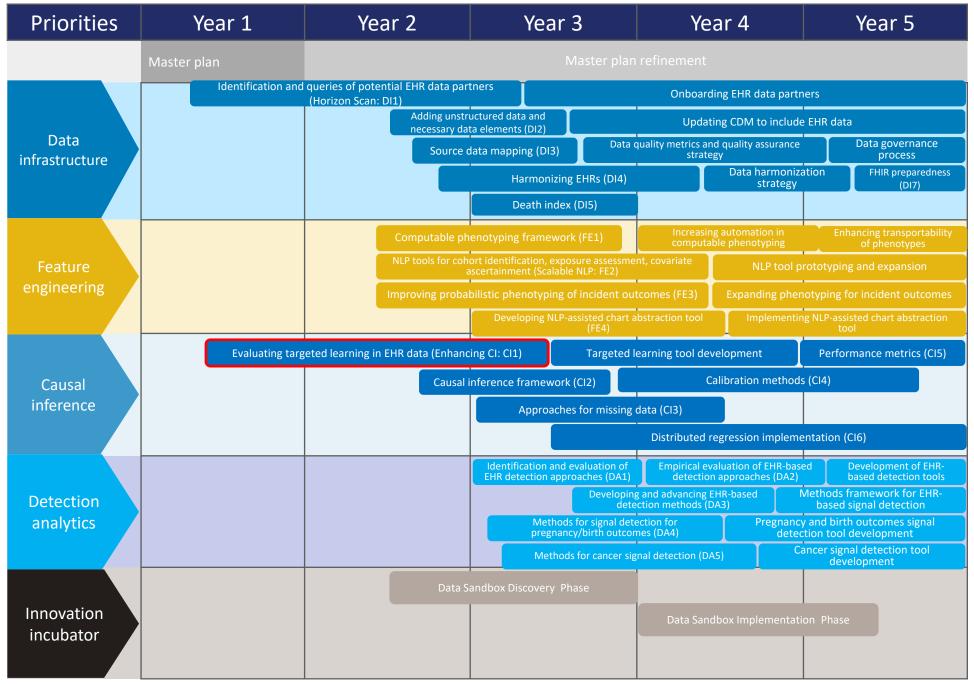
David Carrell

Funding :

- U54 MD010722
- Ro1 LM010685
- Ro1 GM103859
- UL1 TR000445
- CDRN-1306-04869
- R01 MH121455
- Ro1 MH116269
- Ro1 MH118233
- FDA

Questions?

CI1: Enhancing Causal Inference in the Sentinel System



Enhancing Causal Inference in the Sentinel System

Leveraging unstructured electronic health records for large-scale confounding control in real-world evidence studies

Richard Wyss, PhD, MSc

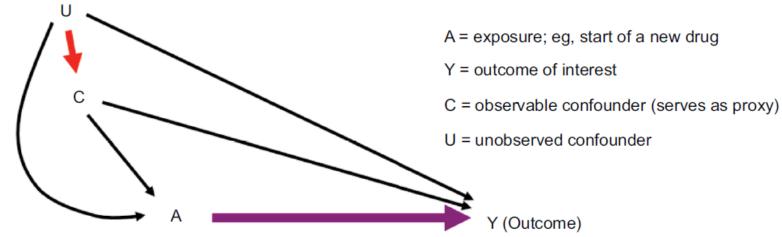
Background

Background: Challenges for Confounding Control in RWE Studies

- Confounding arising from non-randomized treatment choices remains a fundamental challenge for extracting valid evidence to help guide treatment and regulatory decisions.
- Standard tools for confounding adjustment have typically relied on adjusting for a limited number of investigator specified variables.
 - Adjusting for investigator-specified variables alone is often inadequate
 - Some confounders are unknown at the time of drug approval
 - Many confounders are not directly measured in routine-care databases.

Background: Proxy Confounder Adjustment

• Healthcare databases may be understood and analyzed as a high-dimensional set of "proxy" factors that indirectly describe the health status of patients (Schneeweiss 2009, 2017).



Unobserved confounder	Observable proxy measurement	Coding examples
Very frail health	Use of oxygen canister	CPT-4
Sick but not critical	Code for hypertension during a hospital stay	ICD-9, ICD-10
Health-seeking behavior	Regular check-up visit; regular screening examinations	ICD-9, CPT-4, #PCP visits

Background: High-Dimensional Proxy Confounder Adjustment

- How to identify/generate proxy variables for adjustment?
 - High-dimensional propensity score (Schneeweiss 2009)
 - Does not require data pre-processing
 - OMOP approach:
 - Pre-process data into a common data model then use machine learning algorithms for variable selection (e.g., Lasso)
- Current approaches for generating proxy variables for confounder adjustment do not leverage information from unstructured EHR text notes.

Structured health care data

Background: Leveraging Unstructured Electronic Health Records for Large-Scale Proxy Adjustment.

- NLP tools turn free-text notes from EHR data into structured features that can supplement confounding adjustment.
 - However, traditional applications are difficult to scale for large-scale proxy adjustment.
- **Project Objective 3 (use of NLP-generated information from unstructured data):** To explore if unsupervised NLP can be used to generate high-dimensional sets of features from free-text notes for improved large-scale proxy confounding control
 - **Aim 1:** To use scalable applications of NLP to generate structured features from highdimensional data for large-scale proxy adjustment.
 - leverages work from RO1 (Josh Lin, PI; Richie Wyss, Co-PI; Sebastian Schneeweiss, Co-PI)
 - Aim 2: To better understand what machine learning tools for confounder selection perform well for large-scale proxy adjustment in ultra high-dimensional RWE studies.

Methods

Methods: Data Source for Generating Cohort Studies

- Mass General Brigham (MGB) Research Patient Data Registry (RPDR)
 - The electronic health records (EHR) of all the patients aged 65 and above identified in the Mass General Brigham (MGB) Research Patient Data Registry (RPDR) were linked to Medicare claims data
- Linked RPDR-Medicare claims were used to generate 3 cohort studies comparing different classes of medications (details on later slide).
 - Purpose: case studies for evaluating and testing various methods for NLP feature generation for ultra high-dimensional proxy confounder adjustment.

Methods: Using NLP to Generate Structured Features.

- We used 'bag-of-words' to generate features for the top 20,000 most prevalent terms from free-text notes.
 - Very common, simple, and flexible NLP approach
 - Measures the frequency (occurrence) of words within a document
 - Order and structure of words in the document is discarded.
 - The model is only concerned with whether words occur in the document, not where in the document or in relation to other words
- Each word count is then a feature that can be used for modeling

Methods: Study Cohorts

Table 1. Study Cohorts							
		Total N		# Baseline Covariates			
No.	Description	Study Population	Treatment (%)	Outcome (%)	Investigator Specified	Claims Codes	EHR features
1.	High vs low intensity statin with an outcome of major cardiac events	3,529	1,244 (35.3)	138 (3.9)	39	18,409	20,017
2.	Oral anti-coagulants vs non-use with an outcome of stroke and major bleeding	9,571	5,991 (62.6)	158 (1.7)	39	19 , 517	20,051
3.	High vs. low dose PPI with an outcome of peptic ulcer complications	20,862	7,108 (34.1)	234 (1.1)	39	28,041	20,025

Methods: How to best identify confounder information in ultra high-dimensional real-world data?

- Predictive performance did not improve when modeling the outcome, but does this mean that there is no additional confounder information in EHR generated variables?
- Begin by considering various methods for confounder selection
 - Focus on lasso-based approaches
 - Regular Lasso
 - Outcome adaptive lasso
 - Collaborative controlled lasso
 - Outcome highly-adaptive lasso

Methods: How to make objective decisions on which modeling approach is best?

Cannot use actual study with estimated effects to make modeling decisions

- Recent papers have proposed using synthetic control studies to help assess validity of alternative causal inference models and tailor analyses to the given study (Alaa & Van Der Scharr 2019; Schuler et al. 2017; Athey S et al. 2019; Bahamyirou A., et al. 2018; Schuemie MJ, et al. 2018; Petersen et al. 2012)
 - Provides an objective assessment of validity and model selection.
 - A common theme is that they use a variation of 'plasmode simulation' (Franklin et al. 2014).

Variation of the parametric bootstrap where we bootstrap from the original study population, but simulate some aspects of the data structure while leaving other features of the data unchanged.

Typically, we set the outcome data aside (outcome blind data), then simulate the outcome while leaving baseline covariates and treatment status unchanged.

Try to generate synthetic control outcomes (and treatment) that mimic as closely as possible the observed confounding structure in the study cohort.

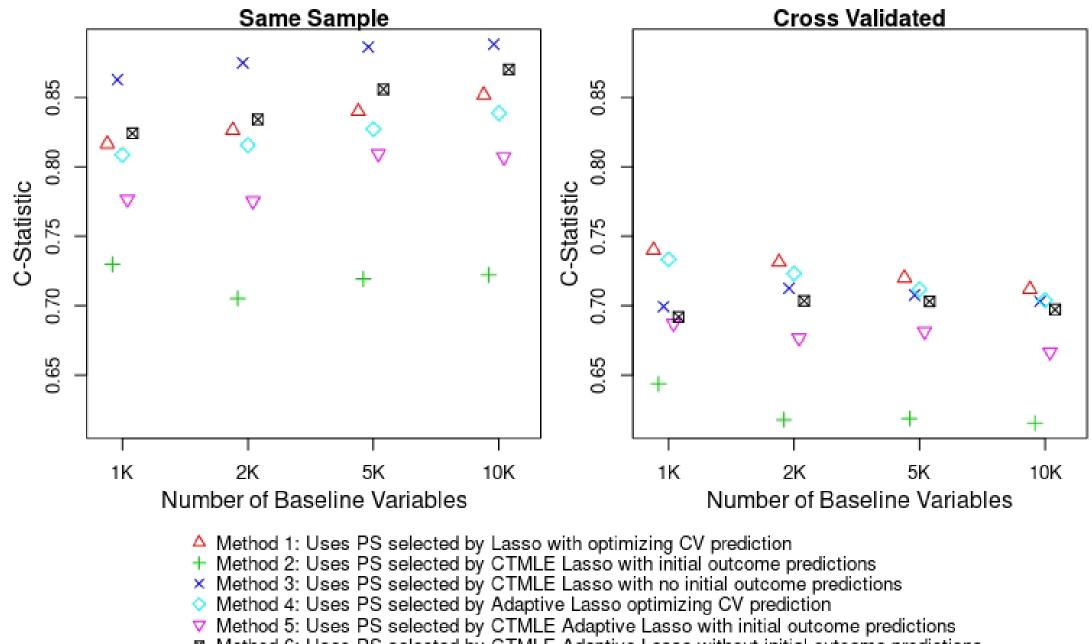
Will be inexact, but close approximations can be useful for testing robustness and validity of causal inference methods for the study at hand.

Confounder Selection & Propensity Score Models				
Description				
Lasso modeling treatment assignment with penalty factor (lambda) that optimizes CV treatment prediction				
Collaborative controlled lasso—Lasso modeling treatment assignment but uses ctmle to choose penalty factor. We include initial predictions for the counterfactual outcomes using an outcome lasso model.				
Collaborative controlled lasso—Lasso modeling treatment assignment but uses ctmle to choose penalty factor. We did not include initial predictions for the counterfactual outcomes (only included treatment in the initial outcome model).				
adaptive lasso modeling treatment assignment with a penalty factor set by user. We assigned a penalty of 0 for all variables selected by the outcome lasso and a penalty of 1 for all other variables (i.e., we forced variables selected by outcome lasso into the lasso model for treatment).				
Collaborative controlled outcome adaptive lasso with initial predictions for the counterfactual outcomes				
Collaborative controlled outcome adaptive lasso with no initial predictions for the counterfactual outcomes (initial outcome model includes only treatment)				

• For each PS model, we estimated the treatment effect using Targeted Maximum Likelihood Estimation (TMLE) that included initial predictions from an outcome lasso model and PS weighting

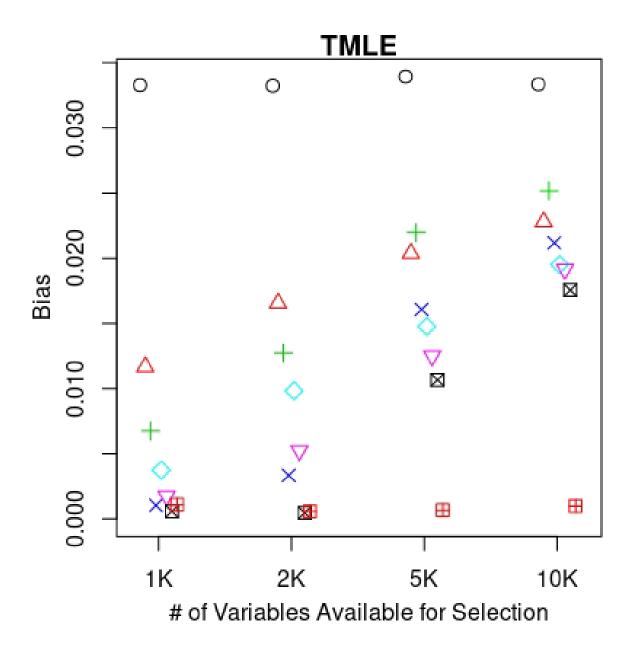
Simulation Results

Selected Simulation Results for Prediction



Method 6: Uses PS selected by CTMLE Adaptive Lasso without initial outcome predictions

Selected Simulation Results for Bias



Lambda Selection for Lasso PS Model

- Unadjusted
- A PS Model 1: Traditional Lasso
- + PS Model 2: CTMLE Lasso with predictions
- × PS Model 3: CTMLE Lasso no predictions
- PS Model 4: Outcome Adaptive Lasso (OAL)
- ▽ PS Model 5: CTMLE OAL with predictions
- PS Model 6: CTMLE OAL no predictions
- Oracle: includes all confounders

General points for discussion

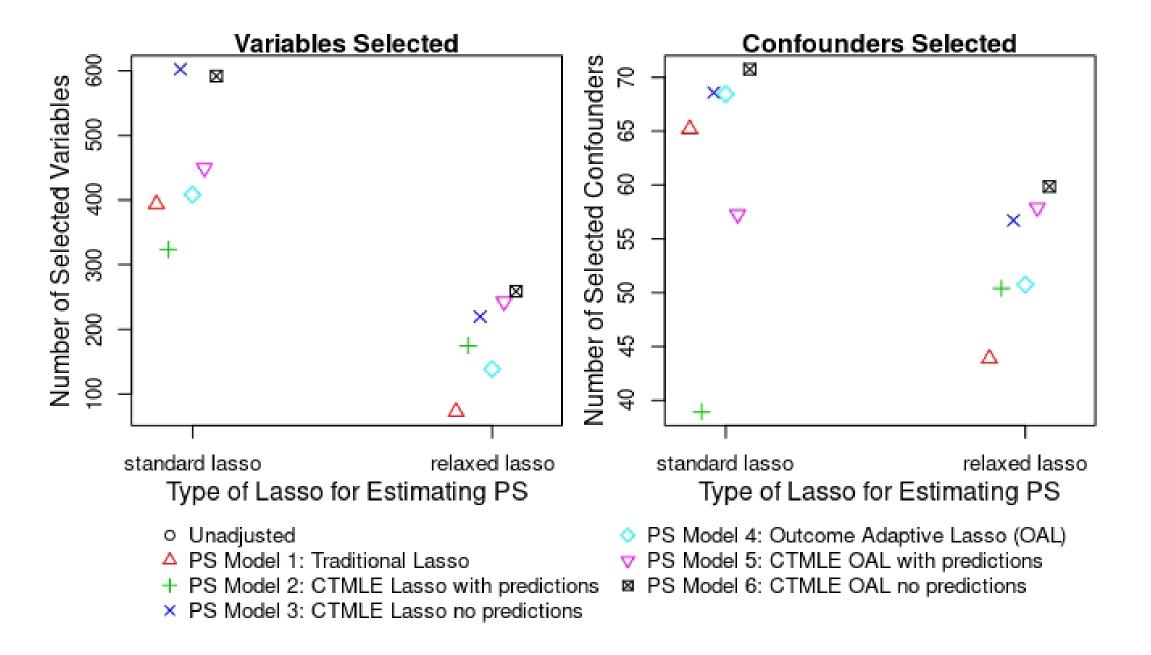
- Selecting models based on collaborative learning improved bias reduction even though predictive performance declined.
 - Outcome adaptive lasso with collaborative selection generally performed best.
 - Some degree of overfitting is beneficial for confounding control when using Machine Learning to data-adaptively select (model) high-dimensional sets of variables
- Bias increased as the number of spurious variables available for selection increased.
 - Bias can result from two sources
 - 1. Lasso model not selecting confounding variables
 - Even when lasso selects confounders there can still be regularization bias (Chernozhukov 2018).
- Use relaxed lasso to reduce regularization bias in sparse high-dimensional data (Meinshausen 2007).

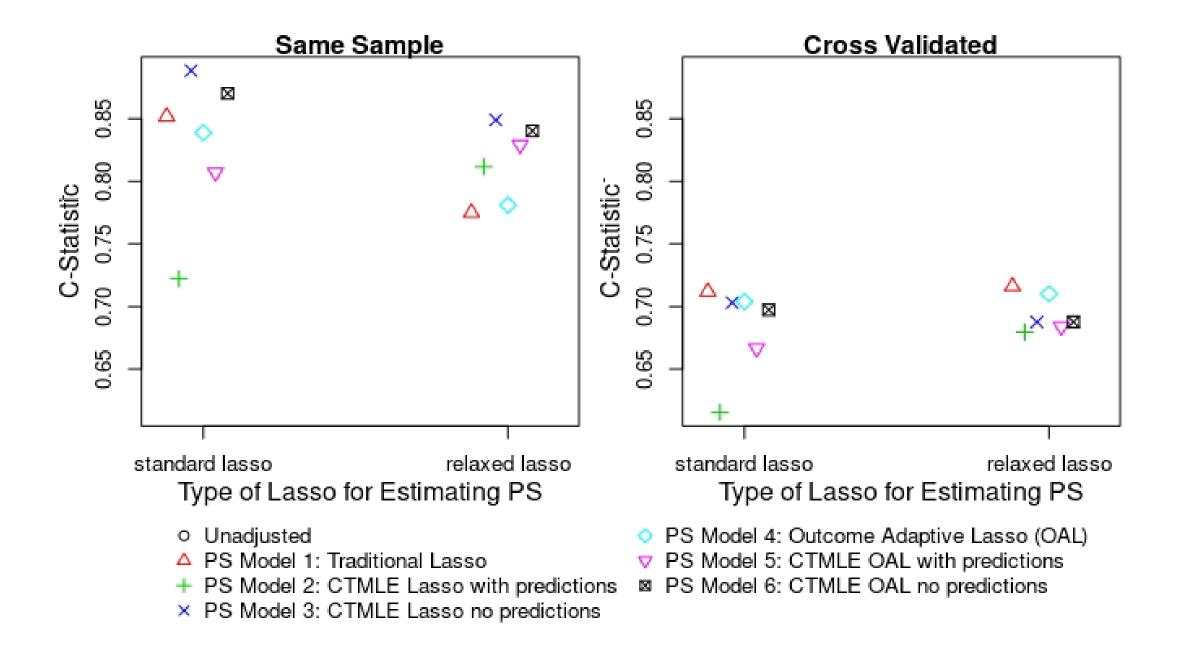
Relaxed lasso

Use relaxed lasso to reduce regularization bias (Meinshausen 2007).

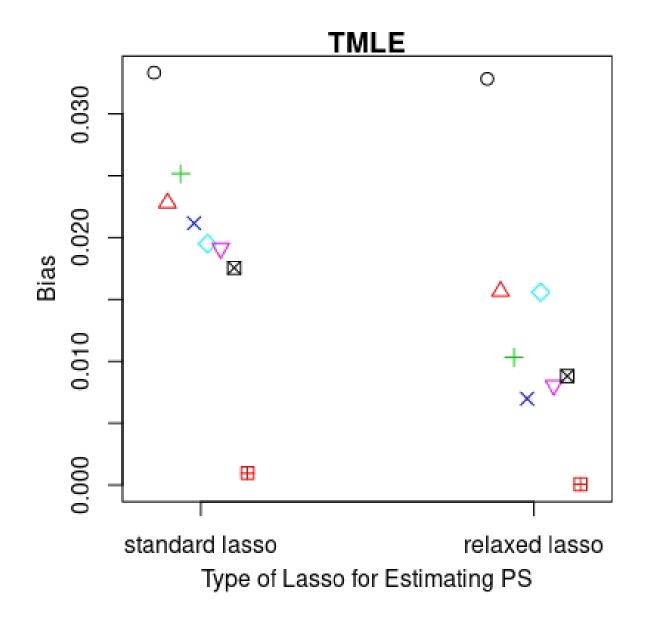
- Runs regularized regression twice:
 - 1. First runs lasso to select lambdas to control variable selection (which variables are selected for each lambda);
 - 2. Second step runs regularized regression again for each set of variables selected by each lambda with less penalization to control shrinkage level of coefficients. The shrinkage penalization in the second step can be selected using Cross Validation.
- 'Idea of the relaxed lasso is to take the lasso fitted object and then for each lambda, refit the variables in the active set with either no penalization or less penalization. This gives the "relaxed" fit'. (Hastie & Tibshirani 2021)
- Relaxed lasso can often improve predictive performance by fitting more parsimonious models with less penalization in sparse high-dimensional data (Meinhausen 2007).

Selected Simulation Results for Variable Selection and Prediction with Relaxed Lasso





Selected Simulation Results for Bias with Relaxed Lasso



- Unadjusted
- A PS Model 1: Traditional Lasso
- + PS Model 2: CTMLE Lasso with predictions
- × PS Model 3: CTMLE Lasso no predictions
- PS Model 4: Outcome Adaptive Lasso (OAL)
- ▽ PS Model 5: CTMLE OAL with predictions
- PS Model 6: CTMLE OAL no predictions
- Oracle: includes all confounders

Discussion

General Points for Discussion after running 'relaxed' lasso

- Relaxed lasso reduced bias in effect estimate compared with standard lasso
- Selecting models based on collaborative learning still improved bias reduction at the expense of predictive performance.
 - Outcome adaptive lasso with collaborative selection generally performed best.
 - Some degree of overfitting is beneficial for confounding control when using Machine Learning to data-adaptively select (model) high-dimensional sets of variables
- Still some bias with large numbers of variables
 - May need large samples to use ML to identify confounders in sparse high-dimensional data.



Future work/next step is to apply top performing models from simulations to empirical studies

Research team

Food and Drug Administration

- Hana Lee, PhD, MS
- Sarah Dutcher, PhD, MS

DPM/HPHCI/Operations Center

• Darren Toh, ScD

Brigham and Women's Hospital

- Richard Wyss, PhD, MS
- Rishi Desai, PharmD, PhD
- Josh Lin, MD, PhD
- Shirley Wang, PhD, MS
- Yinzhu Jin, MS, MPH
- Shamika More, MS
- Luke Zabotka, BA

<u>Kaiser Washington/University of</u> <u>Washington</u>

• Jennifer Nelson, PhD

University of California, Berkeley

- Mark van der Laan, PhD
- Lars van der Laan

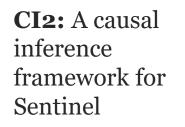
Putnam Data Sciences

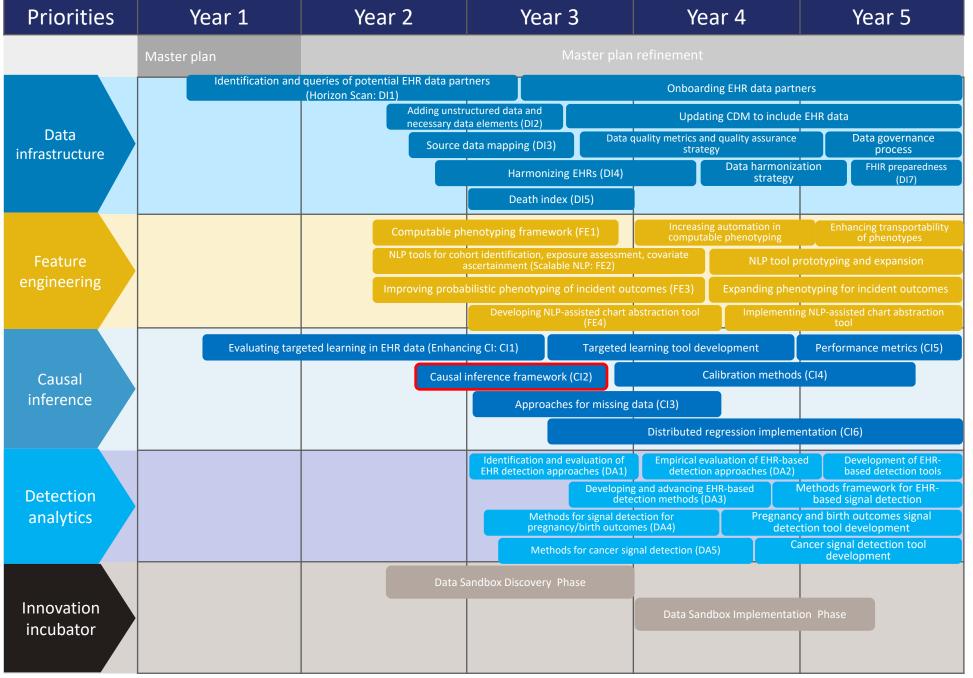
• Susan Gruber, PhD, MS, MPH

University of Michigan

• Xu Shi, PhD

Questions?





A Causal Inference Framework for Sentinel

Rishi J Desai, PhD, Assistant Professor, Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

Background and motivation

Why do we need another framework?

Perspective

Principles of Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND)

Martijn J. Schuemie 1,2, Patrick B. Ryan^{1,3}, Nicole Pratt⁴, RuiJun Chen 1,3, Seng Chan You⁶, Harlan M. Krumholz⁷, David Madigan⁸, George Hripcsak^{3,9}, and Marc A. Suchard^{2,10}

& Therapeutics

REVIEW Den Access

The Structured Process to Identify Fit-for-purpose Data (SPIFD): A data feasibility assessment framework

Nicolle M Gatto 🔀 Ulka B Campbell, Emily Rubinstein, Ashley Jaksa, Pattra Mattox, Jingping Mo, Robert F Reynolds

First published: 30 October 2021 | https://doi-org.ezp-prod1.hul.harvard.edu/10.1002/cpt.2466

Why do we need another framework?

What do we have?

• Various tools exist in the literature for quality assessment, reporting, and describing best practices for pharmacoepidemiologic research

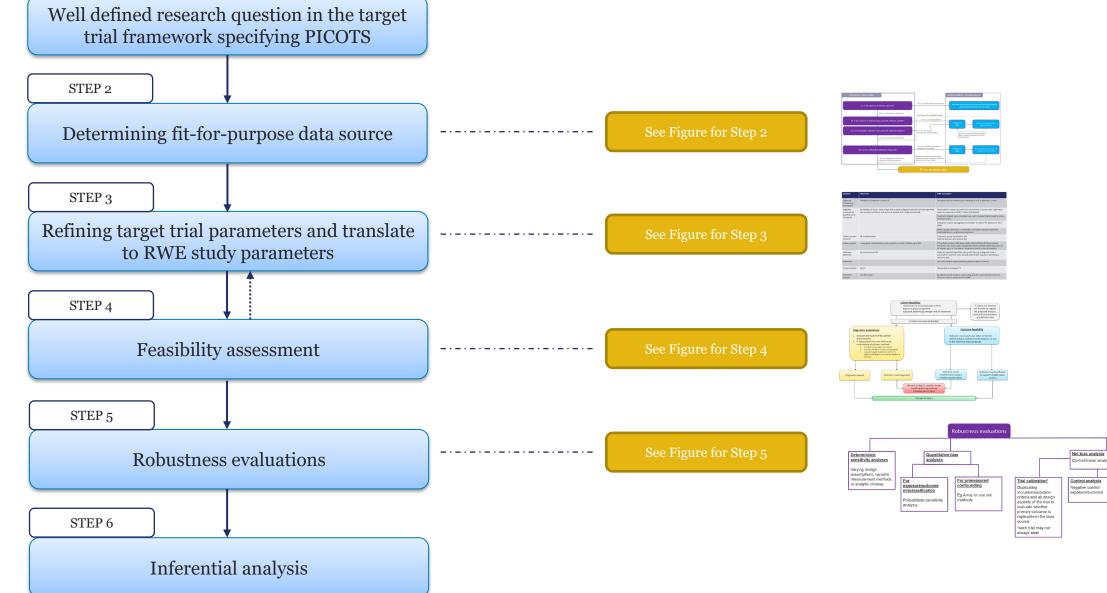
What don't we have?

• None of these tools offer a general framework to guide decision making at various steps along the way

Vision for a framework to guide principled investigations using non-randomized, secondary data

- The Sentinel Innovation Center is developing a causal inference framework proposing <u>a stepwise process that</u> <u>systematically considers key choices</u> with respect to design and analysis that influence the validity of studies conducted with non-randomized, secondary data
- A standardized "industrial" process that will be outlined in this framework will serve as <u>a guide to inform the conduct of</u> <u>non-randomized secondary database studies</u> of drug-outcome evaluation
- Key considerations to meet the FDA need of informing regulatory decision making based on such investigations
 - Limit variations across investigators by outlining a general process
 - Focus on repeatability of the process
 - Written and endorsed by independent experts

A draft of the proposed framework

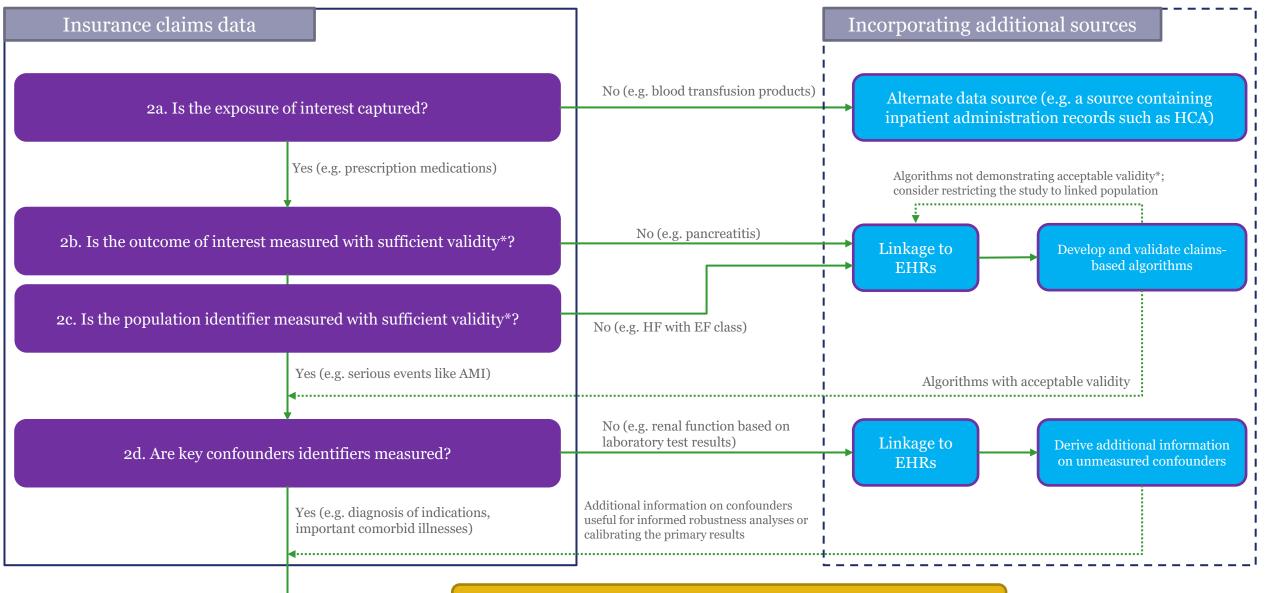


STEP 1

Step 1: Well defined research question in the target trial framework specifying PICOTS

- First and non-negotiable step in any framework that intends to generate causal inference from observed data
- Target trial framework, which is conceptualized as envisioning a hypothetical prospective randomized controlled trial, provides a useful and practical device to sharply define a causal question of interest
- Explicit identification of the following key study parameters
 - patient population (P)
 - the intervention (I) specifying the medical product under investigation,
 - a comparator group (C)
 - the outcome (O) along with an appropriate time horizon (T)
 - setting (S) where the study is implemented

Step 2: Determining fit-for-purpose data sources



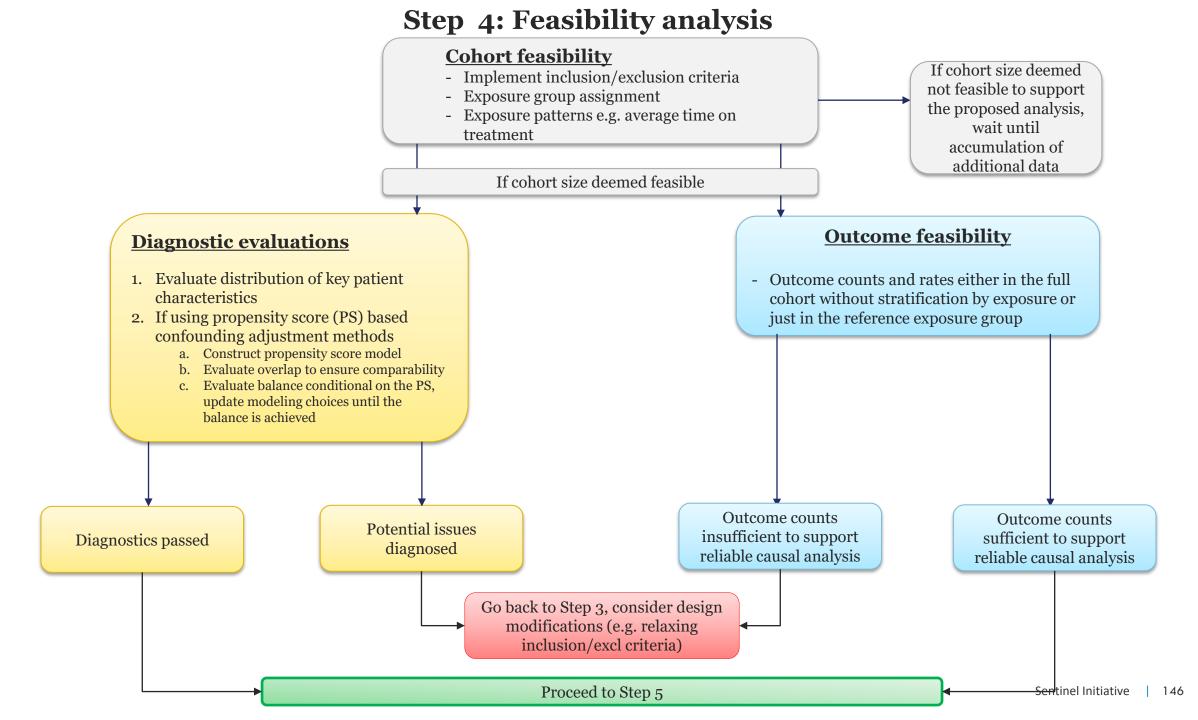
Fit for purpose data

* Validity as demonstrated by parameters including PPV, sensitivity, specificity for binary outcomes; proportion missing for continuous outcomes; and accurate onset for time to event outcomes and Sentinel Initiative | 144 availability of long-term follow-up data for latent outcomes

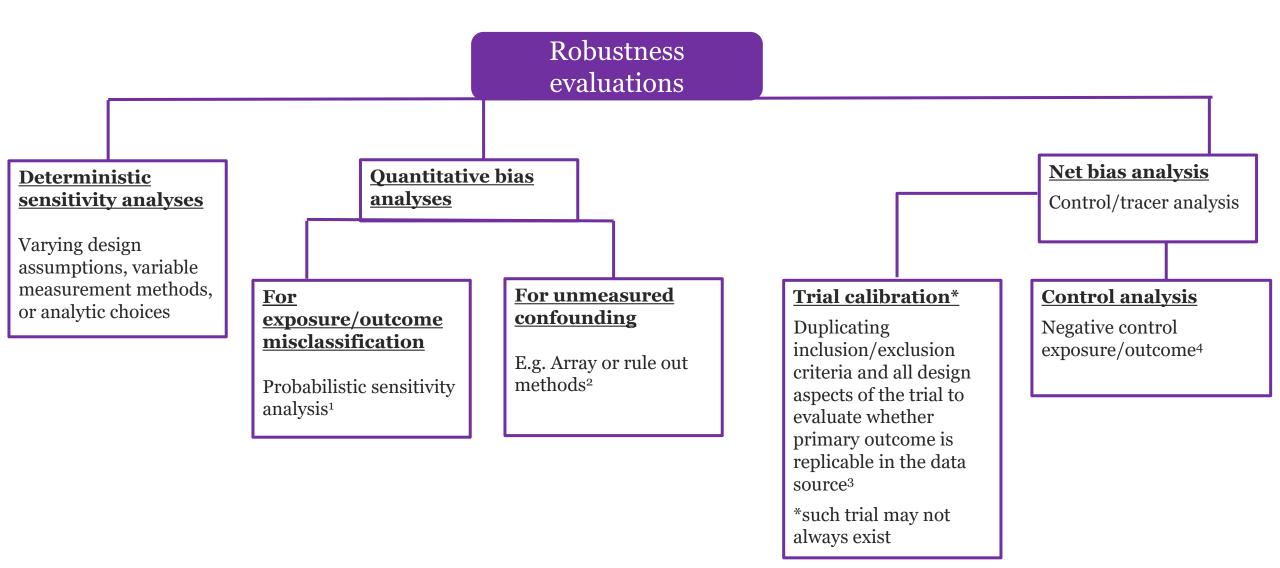
Step 3: Refining target trial parameters¹ and translate to RWE study parameters

(Using a hypothetical example case study of SGLT2 inhibitors and the risk of genital infection in a claims-EHR linked data source)

Element	Ideal trial	RWE translation
Exposure ("treatment strategies")	Randomly assigned initiation of SGLT2i (canagliflozin, dapagliflozin, empagliflozin) versus a DPP4 inhibitors	First prescription dispensing of SGLT2i (canagliflozin, dapagliflozin, empagliflozin) or DPP4 inhibitors identified based on pharmacy claims
Eligibility (assessed at baseline, prior to time 0)	Patients aged 18 years or older, with type 2 diabetes mellitus, and no use of study medications before randomization	Observability related: continuous enrollment for 12 months and >80% mean capture proportion ² in EHRs before study medication initiation Treatment related: No prior use of study medications
time o)	Tanuomization	reatment related. No prior use of study medications
		Indication related: Diagnosis of type 2 diabetes based on diagnosis codes or HbA1c results
		Other: Age 18 or older
Follow-up start (Time 0)	At randomization	At prescription dispensing
Follow-up end	1-year post-randomization unless patients are lost to follow-up or die or have the outcome	Earliest of the outcome, death, insurance disenrollment, or 1-year post initiation
Primary outcome	Hospitalization for genital infections	Hospitalization for genital infections assessed based on primary discharge diagnosis codes
Baseline covariates	-	Demographics, diabetes severity related variables including micro and macrovascular complications and laboratory test results such as HbA1c and serum creatinine, comorbid conditions, comedications, markers for healthy behavior and healthcare utilization
Causal estimand	Intent-to-treat (ITT)	Observational analogue of ITT
Statistical analysis	A Cox proportional hazards model	Adjustment of baseline confounding with propensity score matching followed by an outcome analysis using a Cox proportional hazards model
Subgroup analyses	Stratified by gender	Same as ideal trial



Step 5: Pre-specification of robustness evaluations



¹ Fox et al. International Journal of Epidemiology 2005;34:1370-1376

² Schneeweiss. Pharmacoepiemiology Drug Saf 2006; 15: 291–303

³ Khosrow-Khavar et al. Annals Rheum Dis. 2022

⁴ Lipsitch et al. Epidemiology 2010;21: 383-388

Summary and next steps

- Continuing to fine tune the framework steps
- Conducting a demonstration project to highlight how decisions are made at each step along the way and walk users through the steps based on a realistic case-example
- The goal is dissemination of this framework in peer-reviewed publication by early next year

Questions?

Closing remarks

- Through initiatives such as those discussed today, Sentinel Innovation Center is making strides in helping to achieve the FDA's vision of a Medical Data Enterprise with a query-ready system containing >10 million EHR lives
- Key research needs have been identified and ongoing research projects are addressing some salient challenges presented by EHRs in 4 key domains
 - Data infrastructure
 - Feature engineering
 - Causal inference
 - Detection analytics
- Highly interdisciplinary research work being conducted at the Innovation Center involving experts in the fields of epidemiology, informatics, medicine, and statistics, will generate unique insights regarding meaningful use of EHRs for clinical research and provide practical solutions

PERSPECTIVE OPEN

Broadening the reach of the FDA Sentinel system: A roadmap for integrating electronic health record data in a causal analysis framework

Rishi J. Desai ^[1] ^[2], Michael E. Matheny ^[3], Kevin Johnson², Keith Marsolo³, Lesley H. Curtis³, Jennifer C. Nelson⁴, Patrick J. Heagerty⁵, Judith Maro ^[3], Jeffery Brown ^[3], Sengwee Toh⁶, Michael Nguyen⁷, Robert Ball ^[3], Gerald Dal Pan⁷, Shirley V. Wang ^[6], Joshua J. Gagne^{1,8} and Sebastian Schneeweiss¹

The Sentinel System is a major component of the United States Food and Drug Administration's (FDA) approach to active medical product safety surveillance. While Sentinel has historically relied on large quantities of health insurance claims data, leveraging longitudinal electronic health records (EHRs) that contain more detailed clinical information, as structured and unstructured features, may address some of the current gaps in capabilities. We identify key challenges when using EHR data to investigate medical product safety in a scalable and accelerated way, outline potential solutions, and describe the Sentinel Innovation Center's initiatives to put solutions into practice by expanding and strengthening the existing system with a query-ready, large-scale data infrastructure of linked EHR and claims data. We describe our initiatives in four strategic priority areas: (1) data infrastructure, (2) feature engineering, (3) causal inference, and (4) detection analytics, with the goal of incorporating emerging data science innovations to maximize the utility of EHR data for medical product safety surveillance.

npj Digital Medicine (2021)4:170; https://doi.org/10.1038/s41746-021-00542-0

Innovation Center collaborating organizations

Thank you