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Introduction
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• Importance of rapidly identifying causes of death (CoD) for medical product surveillance. For 
example:

Rapidly identifying death and causes of death is important in medical product safety studies

 In the US, structured EHR data and unstructured notes provide a rich source of clinical information to 
pharmacoepidemiology studies, but death information is often incomplete, and cause of death information 
is typically not available

• Challenges in Death Reporting in US EHR Systems:

Delayed availability of CoD information

Death information often incomplete in US EHR systems

 Significant variability in the quality of data across different EHR systems.

Introduction
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Objective
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Objective 

• Leverage both structured and unstructured EHR data in a multi-modal approach to predict CoD

• Explore the potential of integrating textual data embeddings with traditional structured features for more 

comprehensive and accurate predictions
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Cohort, Data Processing, Feature Extraction, ML Models, and 
Evaluation Metrics 

Methods
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Data Sources and Reference Standards
• VUMC Cohort

 Cohort of VUMC patients consisted of 13,708 patients with last encounter at VUMC between 2019 and 2021 
with matched records within the National Death Index. National Death Index

• National Center for Health Statistics

 Compiles annual reports on births and deaths within the US. Mortality data is grouped into 52 Ranked 
Causes of Death for reporting purposes that are defined by specific ICD-10 codes.
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Multi-Modal Machine Learning Framework for Cause of Death Prediction

Data Sources
•Structured Data (2048 dimensions): Represents clinical categories such as ICD codes, lab test results, 
medications, vital signs, and demographic data (e.g., age, gender, race). 
•Unstructured Clinical Notes (768 dimensions): Derived from free-text clinical notes in the EHR. These notes 
are processed using Clinical Longformer LLM to generate 768-dimensional patient-level embeddings.

Feature Extraction
•Structured Data: Transformed through feature engineering methods, extracting variables from EHR
•Unstructured Data: Clinical Longformer is used to process text and extract relevant patient-level features, 
converting them into embeddings for use in predictive models.

Modeling
•Both structured features and unstructured embeddings are combined and fed into various  ML models 
including XGBoost, RF, SVM), KNN, and a neural network. This diverse set of models allows for robust 
performance evaluation.

•Top 15 Causes of Death (Labels): Includes major causes such as heart disease, cancer, stroke, respiratory 
disease, Alzheimer's, diabetes, and self-harm.
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Structured Features
•Data Source (6-month lookback from the last encounter):-

•Collected Variables:

•Diagnoses (ICD codes)

•Procedures (CPT/HCPCS codes)

•Lab tests (LOINC codes)

•Medications (RxNorm)

•Vitals (e.g., blood pressure, heart rate)

•Demographics (age, gender, race)

•Controlled Vocabularies:

•LOINC

•RxNorm, 

•Clinical Condition Grouping (Clinical Classifications Software (CCS))
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Unstructured Features
•Data Source: 2,710,729 narrative clinical notes

•Document Embeddings:
• Generated using Longformer (processing up to 4,096 tokens) and the output 768 Embeddings 

•Patient-Level Aggregation:
• Max pooling
• Averaging
• Principal Component Analysis (PCA)
• t-SNE

Data Split and labels 

• Train/Test Split: 80% training set and 20% testing set
• CoD labels:

• NDI coded into 52 Rankable Causes of Death
• Top 15 leading causes predicted
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Machine Learning Models
Evaluation Metrics
1. Weighted AUC (Area Under the Curve):

• Measures overall model performance across all 
thresholds.

• Accounts for class weights to handle imbalanced 
datasets.

2. Individual Class AUC:
• AUC calculated for each class separately.
• Assesses model’s ability to distinguish each class 

from others.
3. Weighted F-measure Summary

• The weighted F-measure balances precision and 
recall across all classes, accounting for class 
frequency to provide a comprehensive evaluation of 
model performance on imbalanced datasets.

Machine learning 
1. XGBoost (Extreme Gradient Boosting):

• Efficient, scalable gradient boosting 
implementation.

• Enhances performance by applying boosting 
techniques.

2. Random Forest:
• Ensemble method with multiple decision trees.
• Outputs class mode (classification) or mean 

prediction (regression).
3. K-Nearest Neighbors (KNN):

• Non-parametric, uses k closest examples for 
classification.

• Based on feature space proximity.
4. Support Vector Machine (SVM):

• Finds hyperplane to separate classes.
• Used for classification and regression.
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Weighted f-measure, and weighted AUC the top 15 in 52 
Rankable CoD classification

Results
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Top 15 CODs
52 COD Name Counts Percentage
Malignant Neoplasm 4155 30.3%
Diseases of heart 2192 16.0%
COVID19 1044 7.6%
Unintentional injuries 1042 7.6%
Cerebrovascular disease 612 4.5%
Chronic liver disease and cirrhosis 364 2.7%
Chronic lower respiratory disease 353 2.6%
Diabetes Mellitus 306 2.2%
Nephritis, nephrotic syndrome, and nephrosis 194 1.4%
Influenza and pneumonia 188 1.4%
Septicemia 157 1.1%
Intentional Self Harm 153 1.1%
Parkinson disease 131 1.0%
Essential hypertension and hypertensive renal disease 129 0.9%
Alzheimer 115 0.8%
Other (These represent the remaining 37 CODs) 2,573 18.8%

The selected 52 CODs represents 86% of all the CODs in the selected cohort and the top 15 CODs represent 80%.
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COD Prediction Results
Models Average F-measure Average AUC

Structured data Alone (SVM) 0.59 0.73
Structured data Alone (RF) 0.72 0.79
Structured data Alone (KNN) 0.51 0.65
Structured data Alone (XGboost) 0.74 0.86
Structured (XGBoost) and Unstructured Data (Max Pooling) 0.79 0.90

Structured (XGBoost) and Unstructured Data (Mean) 0.78 0.89

Structured (XGBoost) and Unstructured Data (PCA) 0.75 0.87

Structured (XGBoost) and Unstructured Data (tSNE) 0.78 0.90
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AUC Results of XGBoost Algorithm (Best Performing Model) for Top 15 Classes in 52 
Rankable Causes of Death Classification Based on Held-Out Test Data

Disease Counts AUC (S) 

(95% CI)

AUC (S+U)

(95% CI)
Malignant Neoplasm 4155 0.94[0.93-0.92] 0.95 [0.94-0.96]
Diseases of heart 2192 0.99[0.99-0.97] 0.98 [0.99-0.97]
COVID19 1044 0.81[0.79-0.83] 0.86  [0.85-0.87]
Unintentional injuries 1042 0.82 [0.81-0.83] 0.86 [0.85-0.87]
Cerebrovascular disease 612 0.67[0.65-0.69] 0.75 [0.73-0.77]

Chronic liver disease and cirrhosis 364 0.88[0.86-0.90] 0.89 [0.87-0.91]

Chronic lower respiratory disease 353 0.69[0.70-0.68] 0.78[0.77-0.79]

Diabetes Mellitus 306 0.82[0.80-0.84] 0.80 [0.82-0.78]
Nephritis, nephrotic syndrome, and nephrosis 194 0.96[0.95-0.97] 0.97 [0.96-0.98]

Influenza and pneumonia 188 0.82[0.81-0.83] 0.86 [0.84-0.88]
Septicemia 157 0.92[0.89-0.95] 0.91 [0.89-0.95]
Intentional Self Harm 153 0.73[0.71-0.75] 0.82[0.79-0.85]
Parkinson disease 131 0.89[0.93-0.85] 0.89[0.93-0.85]
Essential hypertension and hypertensive renal disease 129 0.67[0.62-0.71] 0.76[0.73-0.79]

Alzheimer’s disease 115 0.75[0.73-0.77] 0.79[0.77-0.81]
Other (These represent the remaining 37 CODs) 2573 0.77[0.74-0.80] 0.85[0.83-0.87]

S=structured and U=unstructured
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Key findings, future directions

Discussion
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Key Findings

•Enhanced Mortality Prediction through Multi-Modal Modeling: Integrating structured data with unstructured 
clinical notes significantly improves the accuracy of predicting CoD.

•Performance Improvements:
•Weighted AUC improved from 0.86 [0.84-0.87] using only structured data to 0.90 [0.89-0.92] when unstructured 
data was incorporated. 

•Out of the 15 conditions, 10 show statistically significant improvements (non-overlapping 95% confidence intervals) 
when unstructured data is added to the mode

•Significant Gains in Less Common Conditions:
•Notable AUC increases were found for chronic lower respiratory disease (9%), cerebrovascular disease (8%), 
essential hypertension (9%), and intentional self-harm (9%), all of which showed statistically significant 
improvements. 
•Unstructured notes provided valuable signals, especially for conditions with fewer samples, addressing 
underestimation in structured data.
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Develop a Unified LLM Model:
• Explore a single Large Language Model (LLM) capable of understanding both structured and unstructured data for 

improved outcome predictions.

Expand Population Diversity and Scale:

• Apply the multi-modal approach to larger, more diverse cohorts to enhance model generalizability and robustness.

Address Data Quality and Completeness:

• Develop strategies to mitigate the impact of incomplete or poor-quality data on model performance.

Future Directions
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Thank You

Questions?
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