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Disclaimer
• This work was supported by Master Agreement 75F40119D10037 from the U.S. Food and Drug 

Administration (FDA).
• The views expressed in this presentation represent those of the presenter and do not necessarily represent 

the official views of the U.S. FDA.
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Data Infrastructure Update
(Sebastian Schneeweiss)
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Bias as an Obstacle to Causal Inference

1. Confounding

2. Selection bias

3. Information bias

The error mechanisms

• Outcome     
misclassification 
(MC)/ 
measurement 
error (ME)

• Exposure   
MC/ ME

• Confounder 
MC/ ME

• Random

• Differential

• Dependent

• Random

• Differential

• Random

• Differential

Porta M. A Dictionary of Epidemiology 5th ed. 2008
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Data Quality Map

Information Bias
Mechanisms

Data 
Curation & 
Provenance

Measurement Validation 
studies

Measurement 
Characteristics

Quant Bias 
Analysis
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Data Quality Dimensions Relevant for Causal Inference

Data Continuity

Patients receive treatments/assessments by a range of providers 
during their journey through the healthcare continuum:

• More longitudinally complete data throughout the care 
continuum will reduce surveillance related issues/bias

Data Granularity

Detailed clinical and other information improves the measurement of 
exposure, confounders, and outcomes:

• More granular data are preferred for a broad range of etiologic 
studies 

Data Chronology

The accurate chronology of confounder, exposure and outcome 
measurement is critical for causal inference:

• Unclear chronology can lead to a range of biases, like reverse 
causation, adjustment for intermediates, immortal time 

Schneeweiss, Desai, Ball AJE 2024
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✓

✓

B A causal study design 
is implemented in event 
time anchored at the 
cohort entry date

A Claims data provide a 
longitudinal recording of all 
encounters with the 
professional healthcare system

May 1, 2020 Jul 1 Sept 1 Nov 1 Jan 1

Rx RxLab DxVRxDxHospital stay DxV

ICD-10 
CPT-4

ICD-10 
CPT-4 NDC CPT-4 NDCNDC

ICD-10 
CPT-4

DxV

ICD-10 
CPT-4

Note: This figure focuses on elements relevant for a discussion of inferential studies embedded in EHR+claims data. It purposefully disregards 
many informatics aspects that are required but would distract from this discussion.
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Note: This figure focuses on elements relevant for a discussion of inferential studies embedded in EHR+claims data. It purposefully disregards 
many informatics aspects that are required but would distract from this discussion.
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Real-World Evidence Data Enterprise (RWE DE)- An 
Overview

Commercial Network
(21 million lives) 

EHR+claims linked lives in 
SCDM for routine querying

Development 
Network

(4.5 million lives)

EHR+claims linked lives in SCDM +
investigator access to free-text 
EHRs through a standardized 
storage process across sites for 
methods and tool development

 

 Both networks operational

 Several demonstration projects ongoing



Broadening the Reach of Sentinel Inferential Queries with RWE-DE

A. Primary analysis in the RWE-DE; analysis is not 
feasible using claims data from the SDD  

Deidentified patient-level data in Sentinel 
common data model (SCDM)

Central analytic hub
Inferential query execution following 
PRINCIPLED framework

B. Primary analysis in the SDD; supporting analyses in 
RWE-DE

Use cases where 
direct access to 
free-text notes is 
needed

Co-ordinated local analyses
Rapid balance evaluation for 
confounder unmeasured in claims 
data but available in structured or 

Central analytic hub unstructured EHRs

Statistical adjustment for unmeasured Rapid balance evaluation for 
confounders that are measured for a confounder unmeasured in claims data 
subset in structured or unstructured EHR but available in structured EHRs
data using calibration approaches

Statistical adjustment for unmeasured 
Expedited endpoint validation using confounders that are measured for a 
NLP assistancesubset in structured EHR data using 

calibration approaches

Phenotyping algorithm development

Use cases relying on 
structured EHR data

Sentinel System |   13
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Data Sources and Availability in RWE DE
Sentinel Common Data Model Tables 

in RWE-DE*
Enrollment

Demographics

Encounter

Dispensing

Procedure

Diagnosis

Vitals Laboratory

Patient survey 
responses

Prescribing

Death

Cause of 
death

Insurance claims
Outpatient 

services claims

Pharmacy claims

Enrollment

Inpatient services 
claims

Other sources

State vital records

Supporting Tables in the 
Development Network

Clinical text metadata

Clinical notes

Electronic health records
Structured Semi-structured and 

unstructured
Vital signs, 

surveys

Prescription 
orders

Laboratory 
results

Notes

Text stored in 
forms or drop-
down boxes

* Not all the tables are populated at all 
sites depending on data availability
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Methodological Initiatives in 
Sentinel 

(Rishi Desai)
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Causal Inference Requirements

Design
Layer

Achieve causal 
study design
Considering:
• Study question
• Exposure 

variation
• Measurement 

quality

DESIGN CHOICE
1) Controlled 2) self-controlled 3) 
scanning
• Medically-informed target popn

• Patient-informed outcomes
• Biologically-informed effect window

BIAS REDUCTION
• New users, active comparators
• Causal temporality

Exposure before outcome
Confounder before exposure

CA Y

Measures
Layer

Achieve fit-
for-purpose 
measurement

Considering:
• sensitivity
• specificity,
• completeness
• mean sqr diff

Filling Rx
Prescribing Rx, 
self-report, 
infusers, pill caps, 
UDI from OR notes

EXPOSURE

Dx, Px codes
Labs, imaging, 
digital health dev, 
physician notes, 
patient reports

OUTCOME

Dx, Px, Rx codes
Labs, stage, imaging, 
BMI, genomics, 
physician notes, 
services use intensity

CONFOUNDERS

Dx, Px, Rx codes
Monitors, physician 
notes, biomarker, 
omics, behavior, socio-
econ

TARGET POPN

Analytics
Layer

Achieve 
causal 
analysis

Considering:
• Confounders
• Follow-up model
• Measurement 

quality

BALANCE
• Achieve balance:

Regression, PS analysis
Proxy adjustment: HDPS, CTMLE
Time-varying exposure: MSM

• Check balance:
SD, residuals, c-stat

ROBUSTNESS
• Sensitivity analyses of design
• Quantitative bias analysis
• Neg./pos. control endpoints
• Balance in unmeasured 

confounders
• Multiple comparisons

Schneeweiss & Patorno Endocrine Reviews, 2021, Vol. 42, No. 5, 658–690
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Causal Inference Requirements: Design Layer

Design
Layer

Achieve causal 
study design

Considering:
• Study question
• Exposure 

variation
• Measurement 

quality

Activity: Outline a framework to help Sentinel Investigators adhere 
to robust causal inference principles

Measures
Layer

Analytics
Layer
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Causal Inference Requirements: Role of Advanced Methods

Design
Layer

Achieve causal 
study design
Considering:
• Study question
• Exposure

variation
• Measurement

quality

Activity: Outline a framework to help Sentinel Investigators adhere 
to robust causal inference principles

Measures
Layer

Achieve fit-
for-purpose 
measurement
Considering:
• sensitivity
• specificity,
• completeness
• mean sqr diff

Activity: Computable phenotyping to identify health conditions of 
interest incompletely captured with Dx, Px, or Rx codes

Analytics
Layer
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Computable Phenotyping 
What do we mean by computable phenotyping?
• An attempt to accurately identify a health condition of interest from healthcare 

data using combination of various sources of information eg diagnosis codes, 
procedures, medications, symptoms in physician notes (aka “features”)

• For many conditions, complex algorithms are needed to integrate various 
sources of information to assign probabilities of having the condition of interest 
in a patient given her profile

• When these algorithms are created, we typically need to validate our predictions 
against some “gold-standard” truth to determine the best approach
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Computable Phenotyping: General Framework

• 5 stages of model development
• Fitness-for-purpose assessment 
• Creating gold standard data 
• Feature engineering 
• Model development
• Model Evaluation and reporting

• Avoid unnecessary complexity
• Leverage automation when feasible
• Design for transportability/reusability



Computable Phenotype: Development Process 

• Use of fully-automated algorithms (or models) to determine which patients have a particular 
clinical condition (AKA phenotype, health outcome of interest, “is a case”)

|   24Sentinel System

Potential 
cases

Claims 
Data

NLP 
Data

EHR 
Data

Algorithm 
(Model)

Cases

Non-
cases

Feature engineering

Evaluation
Sensitivity, PPV, …

Slide courtesy of David Carrell 
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Review codes

EH
R

Assemble corpus

Specify logic

Validate codes

NLP
MetaMap

Validate NLP

Identify Implement

= Clinicians = Informaticists

Define
Propose targets

Review  knowledge

Propose
codes

Propose
terms

EHR

Manual Feature Engineering

Assemble datasets

Write code

NLP
MetaMap

Create NLP

Perform QC

Slide courtesy of David Carrell 
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Manual Feature Engineering 
= Clinicians = Informaticists

Identify Define Implement

Slide courtesy of David Carrell 
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Feature Engineering: Automated = Clinicians = Informaticists

Identify & Define*

Clinical knowledge Concepts found in ≥3 
articles ≥3 articles articles

Medical dictionary

NLP

MetaMap

Anaphylaxis

Anaphylaxis

Anaphylaxis

Anaphylaxis

Anaphylax
is (~100 to ~300)

Optional:
Remove 

non-
specific 

concepts

Implement

NLP

MetaMap

Patient charts

~100 to ~300 
features per patient

Features 
= counts 
of each 
concept

* Yu et al. JAMIA 2015
Slide courtesy of David Carrell 
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Feature Engineering: Automated
= Clinicians = Informaticists

Identify & Define

Optional

Implement

Slide courtesy of David Carrell 
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Feature Engineering: Manual vs. Automated

Automation advantages:
•  Short development time
•  Low/no expenditure for domain expertise
•  Reduced operator dependence
•  Highly replicable

  Will it work?  As a starting point?  As an overall solution?

Slide courtesy of David Carrell 
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Causal inference requirements: role of advanced methods

Design
Layer

Achieve causal 
study design
Considering:
• Study question
• Exposure variation
• Measuremen t

quality

Activity: Outline a framework to help Sentinel Investigators adhere 
to robust causal inference principles

Measures
Layer

Analytics
Layer

Achieve causal 
analysis

Considering:
• Confounders
• Follow-up model

Activity: 1. structural missing data investigations
2. Machine learning assisted analytics to enhance confounding

adjustment 

Activity: Computable phenotyping to identify health conditions of 
interest incompletely captured with Dx, Px, or Rx codes

Achieve fit-
for-purpose 
measurement

Considering:
• sensitivity
• specificity,
• completeness
• mean sqr diff
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Activity: 1. Structural Missing Data 
Investigations
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Activity 2. Machine Learning Assisted Analytics to 
Enhance Confounding Adjustment 
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Leveraging Unstructured EHRs for Large-Scale Proxy 
Adjustment

(ultra-high dimensional data)
NLP tools turn free-text notes from EHR data into structured features that can serve as 
proxy confounding adjustment 

Table. Example data structure for 2 cohort studies that include linked claims with NLP generated EHR 
features 

Sample Size Outcome Baseline Covariates

Cohort NTotal NTreated NComparator NTotal NTotal NPredefined N**
Proxies

Study 1:A 21,343 13,576 7,767 899 (4.2%) 14,937 91 14,846

Study 2:B 35,031 12,872 22,159 251 (0.7%) 12,464 91 12,373

A Study 1: Effect of NSAIDs versus opioids on acute kidney injury

B Study 2: Effect of high vs low-dose proton pump inhibitors (PPIs) on gastrointestinal bleeding

** Number of claims and EHR features after screening those with prevalence <0.001
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Propensity Score (PS) Models with Ultra-High Dimensional Data

Overfit PS models that include too many variables could lead to reduced covariate overlap, positivity violations

Some degree of dimension reduction is necessary– BUT ideally, without compromising bias reducing 
properties

Various approaches for fitting PS models available for this purpose

1. Traditional LASSO (L1 regularization with loss function based on minimizing prediction error of treatment)

2. Outcome adaptive LASSO (forces all variables that predict the outcome in the LASSO PS model)

3. Collaborative controlled LASSO (variable selection based on minimizing empirical loss of the estimate for the target 
causal parameter i.e treatment effect)

4. Collaborative controlled, outcome adaptive LASSO (combination of 2 & 3)

Wyss et al. AJE (In Press)
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Propensity Score Models with Ultra-High Dimensional Data
Use of cross-fitting to manage overfitting

• Randomly split the data into 10 equally sized non-overlapping groups. The given Lasso model 
trained in 9 of the groups. The trained model was then applied to the held-out group to assign 
PS. 

• Same models described on the previous slides with cross-fitting

5. Traditional LASSO (L1 regularization with loss function based on minimizing prediction error 
of treatment)

6. Outcome adaptive LASSO (forces all variables that predict the outcome in the LASSO PS 
model)

7. Collaborative controlled LASSO (variable selection based on minimizing empirical loss of the 
estimate for the target causal parameter i.e treatment effect)

8. Collaborative controlled, outcome adaptive LASSO (combination of 2 & 3)

Wyss et al. AJE (In Press)
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Propensity Score Models with Ultra-High Dimensional Data: 
Simulation Results

Wyss et al. AJE 2024

As overfitting increases, models with cross-
fitting, especially 7 & 8, tend to outperform other 
models

Take home point:
Advanced analytical approaches can allow for enhanced 
confounding adjustment using granular data from EHRs  
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Propensity Score Models with Ultra-High Dimensional Data: 
Simulation Results

Propensity score distributions for treated (blue) and comparator (red) groups for one simulated dataset 
consisting of 9,500 spurious variables and 500 baseline confounders that ranged in the strength of covariate 
effects on treatment and outcome (Scenario 5 consisting of 10,000 total baseline variables)

What (likely) explains robust 
performance:
Cross fitting allows for reducing 
non-overlap for the overfit 
collaborative-controlled models

Wyss et al. AJE 2024
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Decision Guides to 
Integrate Methodologic 
Advances with Practice
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Draft Decision Guide for Evaluating Data Fitness for Purpose in Sentinel: 
Focus on Outcomes*
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Draft Decision Guide for Evaluating Data Fitness for Purpose in Sentinel: 
Focus on Confounders
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Summary

• Large scale data infrastructure where EHRs are linked to claims data will offer visibility 
into additional clinical information that is not available in claims data alone

• Methodological innovations will allow investigators to readily leverage the infrastructure 
as needed

• All these activities ultimately will offer opportunities to improve the validity of studies of 
medical products in clinical practice and to expand the range of questions that can be 
answered through Sentinel
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Thank You
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