Rishi Desai, PhD?, Robert Ball, MD, MPH?2, ScM,
Methodological Patrice Verpillat, MD, MPH, PhD3, Sebastian
- Schneeweiss, MD, ScD!?, Talita Duarte-Salles, PhD4,
Qg\g,laj?aiis;;{nl:!eal Daniel Prieto-Alhambra, MD, Msc, PhD5

' Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and

o
World EVI dence Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States
[ )
2 Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, Food and Drug
Ge n e ratl o n Administration Silver Spring, United States
[
SyStems° 3 European Medicines Agency, Amsterdam, Netherlands
( J
4 Fundacio Institut Universitari per a la recerca a I'Atencié Primaria de Salut Jordi Gol i Gurina
Perspectives from

(IDIAPJGol), Barcelona, Spain

Sentineland

5 University of Oxford, United Kingdom

%202415PE

~ ANNUAL MEETING



Panel introduction

Robert Ball, MD, MPH, ScM
Deputy Director, Office of
Surveillance and
Epidemiology (OSE), Center
for Drug Evaluation and
Research (CDER), FDA

Sebastian Schneeweiss
Professor of Medicine
Division of
Pharmacoepidemiology and
Pharmacoeconomics
Harvard Medical School
Brigham & Women's Hospital

Rishi J Desai, MS, PhD
Associate Professor of Medicine
Division of
Pharmacoepidemiology and
Pharmacoeconomics

Harvard Medical School
Brigham & Women's Hospital

Patrice Verpillat, MD, MPH,
PhD

Head of the Real-World
Evidence (RWE) Workstream
of the Data Analytics
Taskforce at the European
Medicines Agency (EMA)

Talita Duarte-Salles, MPH, PhD
Epidemiologist
Senior Epidemiologist, IDIAPJGol

- and Assistant professor of Medical

Informatics, Erasmus MC

Dani Prieto-Alhambra, MD
MSc(Oxf) PhD

Section Head - Health Data
Sciences at Botnar Research
Centre and Professor at
University of Oxford and
Erasmus MC



Disclaimer

« This work was supported by Master Agreement 75F40119D10037 from the U.S. Food and Drug
Administration (FDA).

« The views expressed in this presentation represent those of the presenter and do not necessarily represent
the official views of the U.S. FDA.

Sentinel System |



Sentinel

Data Infrastructure Update

(Sebastian Schneeweiss)



Bias as an Obstacle to Causal Inference

1. Confounding
2. Selection bias

3. Information bias

Porta M. A Dictionary of Epidemiology 5t ed. 2008

The error IAnechanisms

Outcome
misclassification
(MC)/
measurement
error (ME)

Exposure
MC/ ME

Confounder
MC/ ME

Random
Differential
Dependent

Random

Differential

Random

Differential

Sentinel System
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Data Quality Map

Information Bias
Mechanisms

Data
Curation &
Provenance

Sentinel System | 6



Data Quality Dimensions Relevant for Causal Inference

Data Continuity

Data Granularity

Data Chronology

Schneeweiss, Desai, Ball AJE 2024

Patients receive treatments/assessments by a range of providers
during their journey through the healthcare continuum:

« More longitudinally complete data throughout the care
continuum will reduce surveillance related issues/bias

Detailed clinical and other information improves the measurement of
exposure, confounders, and outcomes:

« More granular data are preferred for a broad range of etiologic
studies

The accurate chronology of confounder, exposure and outcome
measurement is critical for causal inference:

« Unclear chronology can lead to a range of biases, like reverse
causation, adjustment for intermediates, immortal time

Sentinel System



Data
continuity

Data
granularity

Data
chronology

®

Washout Window
(No drug A or B, no prior event)
Days [-», -1]

A causal study design

is implemented in event Covariat_e Assessment Wir!d_oyv Follow-up Window
time anchored at the g o ) & Days [1, Censor]

cohort entry date
Cohort Entry Date >
(New use of drug A vs. B)
Claims data provide a ICD-10 ICD-10 ICD-10 1CD-10
longitudinal recording of alll e Pl crre e iy CPT4
encounters with the Hospital stay @ n& . & A n
professional healthcare system o7 e R e EEE e
I\/Iay 1, 2020 Jul 1 Sept 1 Nov 1 Jan 1

Note: This figure focuses on elements relevant for a discussion of inferential studies embedded in EHR+claims data. It purposefully disregards

many informatics aspects that are required but would distract from this discussion.
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Data
continuity

Washout Window
(No drug A or B, no prior event)

A causal study design Sl
is implemented in event Covariate Assessment Window Follow-up Window
time anchored at the (ngnos"ch:;:T:é,c_?;"orb'd't'es) & Days [1, Censor]

cohort entry date
Data . Cohort Entry Date >
granularity (New use of drug A vs. B)
@ Claims data provide a ICD-10 ICD-10 ICD-10 ICD-10
longitudinal claims recording of e P Nbe e Noe Nbe iy
all encounters with the Hospital stay @ & & &
professional healthcare system @ | Illﬁq—.-r-.—.—.—,—,-P
May 1, 2020 0 Jul'l ' Sept 1 Nov 1 !
Data i E
chronology > i i =
@ EHR data within system P | | [Bloodpres
. BMI ! | BMI
from Hospital and General o] : : ST
Practitioner (GP) Smoking i i Smoking
EKG i [Cardiologist| XS
@ EHR data from outside Glucose ; Glucose
system Laboratory G and
Cardiologist remain Hospital H | [Amputation : _%
unobservable to the Blood pres. |[OR notes ! G
investigator Phys activity | | Doc notes ! Weight
Smoking Nurse notes ! HbA1c
CBC Medications
HbAlc iv drugs
Glucose BMI HbAlc
BNP . Lipid panel
Heart echo
Blood pres.
X-ray
Diet control
Note: This figure focuses on elements relevant for a discussion of inferential studies embedded in EHR+claims data. It purposefully disregards Sentinel System | 10
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Data
continuity

Data
granularity

Data
chronology

Note: This figure focuses on elements relevant for a discussion of inferential studies embedded in EHR+claims data. It purposefully disregards

A causal study design
is implemented in event
time anchored at the
cohort entry date

@ Claims data provide a
longitudinal claims recording of

all encounters with the
professional healthcare system

@ EHR data within system
from Hospital and General

Practitioner (GP)

@ EHR data from outside
system Laboratory G and
Cardiologist remain
unobservable to the
investigator

Washout Window
(No drug A or B, no prior event)
Days [, -1]

Covariate Assessment Window
(Prognostic factors, comorbidities)
Days [-90, -1]

AN\ e NN

Cohort Entry Date >
(New use of drug A vs. B)

ICD-10 ICD-10 ICD-10 ICD-10
CPT-4 CPT-4 NDC CPT-4 NDC NDC CPT-4 CPT-4
rosoital <oy QR YN N\
I .....-I....-------I--Illlllllllllllllllmlllﬁ
May 1, 2020 N Jul'l ' Sept 1 Nov 1 ! Jan1
| |
1 1
1 1
1
GP | ! GP
1
Blood pres. ! ! Blood pres.
BMI | | BMI
Diet control | | Diet control
1 1
Smoking ! - Smoking
EKG | Cardiologist EKG
Glucose | Glucose
1
| NYHA class
:
Hospital H Amputation | Chest X-ray
Blood pres. || OR notes |
p' . ! EKG
Phys activity | | Doc notes ! Weight
Smoking Nurse notes ! HbALc
CBC Medications
HbAlc iv drugs -
Glucose BMI HbA1lc
BNP Lipid panel
Blood pres.
X-ray
Diet control

many informatics aspects that are required but would distract from this discussion.
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Real-World Evidence Data Enterprise (RWE DE)- An
Overview

Development

Commercial Network Network
(21 million lives) Il Mass General Brigham

. m Duke Clinical Research Institute
healthverity @ TriNetX [ ]

o o o o VANDERBILT UNIVERSITY
EHR+claims linked lives in v

=D

I

MEDICAL CENTER

SCDM for routine querying
# KAISER PERMANENTE.
Kaiser Permanente Washington
Health Research Institute
EHR+claims linked lives in SCDM +
X investigator access to free-text
v Both networks operational EHRs through a standardized
v" Several demonstration projects ongoing storage process across sites for

methods and tool development

Sentinel System | 12



Broadening the Reach of Sentinel Inferential Queries with RWE-DE

A. Primary analysis in the RWE-DE; analysis is not B. Primary analysis in the SDD; supporting analyses in
feasible using claims data from the SDD RWE-DE

Development Network
(4.5 million lives)

Use cases where

Commercial Network = ‘
] I il Mass G | Brigh
Commercial Network S B | oo | | direct accessto
o) e e ) riNetx free-text notes is
EHR+claims linked lives in SCDM VANDEzZ:;zA?:;JNNTIE\;ERSITY needed
—————— for routine querying
. . [ r ——
[ health\ferlty @ TrlNetX : % KAISER PERMANENTE. 1
o Renmmep et |
I [
. . . . 1 EHR+claims linked lives in SCDM + |
EHR+claims linked lives in SCDM I . et et I
I Use CGSGS rel)’lng on Investigator dccess fo Tfree-tex I
fOr I’OUﬁne ver in 1 EHRs through a standardized I
q y g i STFUCTUFGd EHR dqtq storage process across sites for I
i | methods and tool development *
. ags . . . |
: Deidentified patient-level data in Sentinel I C dinated | | |
: common data model (SCDM) : o-ordinated local analyses
II : Rapid balance evaluation for
| : I\ | Il confounder unmeasured in claims
: v data but available in structured or
! Central analytic hub unstructured EHRs
Y . . Statistical adjustment for unmeasured
. Rapid balance evaluation for
Cenfrql GI‘\GIY"IC hUb confounder unmeasured in claims data . confounders that are measured for a
-1 but available in structured EHRs Vv subset in structured or unstructured EHR
1 H H i
Inferential query execution following data using calibration approaches

PRINCIPLED framework

Statistical adjustment for unmeasured
: ‘7i ® Expedited endpoint validation using

. confounders that are measured for a NLP ist
. . assistance
AW subset in structured EHR data using

calibration approaches

H E 5 &— Phenotyping algorithm development
e
L
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Data Sources and Availability in RWE DE

Sentinel Common Data Model Tables Supporting Tables in the
in RWE-DE* Development Network
I Il I I S
Enrollment Encounter Procedure Vitals Laboratory Clinical text metadata

H HBHH BH
L] L] Ll

Demographics Dispensing Diagnosis Prescribing  Patient survey Cause of
responses death

Clinical notes

] |

Insurance claims Electronic health records

Outpatient Structured Semi-structured and
services claims unstructured

Vital signs,

surveys
Pharm laim Inpatient services Text stored in
armacy claims claims Laboratory forms or drop-

results down boxes

Prescription
orders

Other sources

State vital records

* Not all the tables are populated at all

Sentinel System | 14
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Causal Inference Requirements

Achieve causal | DESIGN CHOICE BIAS REDUCTION N
Design study design 1) Controlled 2) self-controlled 3) » New users, active comparators A—» C—>»Y
Laye]f' Considering: scanning * Causal temporality
« Study question « Medically-informed target pop® Exposure before outcome
« Exposure Pati nf d Confounder before exposure
variation * Patient-informed outcomes
« Measurement * Biologically-informed effect window
quality

Measures
Layer
ﬁ;?;ge BALANCE ROBUSTNESS
Ana]ytics analvsis * Achieve balance: * Sensitivity analyses of design
Laver . y. Regression, PS analysis « Quantitative bias analysis
y Considering: ey e DL, (CILIILD « Neg./pos. control endpoints
+ Confounders Time-varying exposure: MSM .
- elellleniry i . + Balance in unmeasured
* Measurement ‘ ggleck dballance' confounders
lity , residuals, c-stat q .
. dua  Multiple comparisons

\/

Sentinel System | 16
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Causal Inference Requirements: Design Layer

Achieve causal
Design | study design
Layer Cosnsiéiering: . Activity: Outline a framework to help Sentinel Investigators adhere
® t t ° ° °
 Expostre to robust causal inference principles
variation
* Measurement
| quality
Measures
Layer
Analytics

Layer

Sentinel System | 17



RESEARCH METHODS AND REPORTING

| '.) Check for updates

For numbered affiliations see
end of the article

Comespondence to: R | Desai
rdesaig@bwh.harvard edu

(or @RishiDesaill on Twitter;
ORCD 0000-0003-0299-727 3)

Additional material is published
online only. To view please visit
the journal online.

Citethisas: BM/ 2024;384:e076460
http: ffdx_doi.org/10.11 36/

Process guide for inferential studies using healthcare data
from routine clinical practice to evaluate causal effects of
drugs (PRINCIPLED): considerations from the FDA Sentinel

Innovation Center

Rishi ) Desai," Shirley V Wang,' Sushama Kattinakere Sreedhara,’ Luke Zabotka,’

Farzin Khosrow-Khavar,' Jennifer C Nelson,” Xu Shi,” Sengwee Toh,” Richard Wyss,'
Flisabetta Patorno," Sarah Dutcher,” Jie Li,” Hana Lee,” Robert Ball,” Gerald Dal Pan,’

Jodi B Segal,® Samy Suissa,” Kenneth ] Rothman,? Sander Greenland,” Miguel A Hernan,'”
Patrick | Heagerty,'" Sebastian Schneeweiss’

Th |5 repDr‘t prﬂ p'D'EE'S a Ste DW'SE Non-interventional SllldiES, also referred to as

. observational studies, are conducted using real world
Process covering the range of data sources typically including healthcare data that
considerations to S‘fStE matica “')l' are generated during provision of routine clinical care

consider ke-}; choices for StUd‘y' dESigﬂ (including health insurance claims and electronic
. health records). These studies provide an opportunity
and data analysis for non-

to fill in evidence gaps for questions that have not been

interventional studies with the central answered by randomized trials." However, generating
0 b] ective of fosteri ng gene ration of decision grade evidence from healthcare data requires

Sentinel System
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Formulate well defined causal question via See table 1 for step 1
specification of target trial protocol

See figure 2 for step 2
D - > 2D. Identify Fit~fofpurpose data?wot available
emulation of each fit-for-purpose for target trial emulation
componentof data source _ :
target trial protocol Fit-for-purpose data available

for target trial emulation

l l See figure 3 for step 3
“ Desired precision not achievable

Study planning
A

Develop plan for robustness assessments including See figure 4 for step 4 ~-+-------
deterministic sensitivity analyses, probabilistic sensitivity
analyses, and net bias evaluation

.

{ Inferential analysis

Inference

Assess expected precision and or diagnostic criteria not met
conduct diagnostic evaluations Desired precision achievable V4
l and diagnostic criteriamet "7 >

Protocol amendment reporting [f=
all changes and rationale |#=

Reassess research question in step 1

Protocol registration
Move on to step 3

Consider alternative design choices
and data sources in step 2 or reassess ::-:
research question in step 1

Move on to step 4

Protocol amendment with expected
precision assessment and diagnostic
evaluations along with prespecified
robustness assessments

Fig 1 | Overview of the process guide for inferential studies using healthcare data from routine clinical practice
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Causal Inference Requirements: Role of Advanced Methods

Design
Layer

Measures
Layer

Analytics
Layer

Achieve causal
study design

Considering;:

+ Study question

» Exposure
variation

* Measurement

quality

Activity: Outline a framework to help Sentinel Investigators adhere \

Activity: Computable phenotyping to identify health conditions of

interest incompletely captured with Dx, Px, or Rx codes

Sentinel System

20



JAMIN

ASCHOLARLY JOURNAL OF INFORMATICS IN HEALTH AMD BIOMEDICINE

Issues

Article Contents

Abstract

Author notes

More Content » Submit v Purchase Alerts About v

JOURNAL ARTICLE  ACCEPTED MANUSCRIPT

A general framework for developing

computable clinical phenotype algorithms @
David S Carrell, PhD 2, James S Floyd, MD, MS, Susan Gruber, PhD,
Brian L Hazlehurst, PhD, Patrick J Heagerty, PhD, Jennifer L Nelson, PhD,

Brian D Williamson, PhD, Robert Ball, MD, MPH, ScM  Author Notes

Journal of the American Medical Informatics Association, ocael21,
https://doi.org/10.1093/jamia/ocael2l

Published: 15 May 2024  Article history v

Journal of the American Medical Informatics Association, 2023, 1-9
https://doi.org/10.1093/jamia/ocad241
Research and Applications

A\NMIN

IPOEMAT I8 PEOFTSEIONALS, LEABIGD THE WY,

OXFORD

Journal of the Ame

Research and Applications

Data-driven automated classification algorithms for acute
health conditions: applying PheNorm to COVID-19 disease

Joshua C. Smith, PhD"#, Brian D. Williamson, PhD?, David J. Cronkite, MS2, Daniel Park, BS?,

Jill M. Whitaker, MSN’, Michael F. McLemore, BSN', Joshua T. Osmanski, MS', Robert Winter, BA’,
Arvind Ramaprasan, MS2, Ann Kelley, MHA?, Mary Shea, MAZ?, Saranrat Wittayanukorn, PhD?3,
Danijela Stojanovic, PharmD, PhD?, Yueqin Zhao, PhD?, Sengwee Toh, ScD?,

Kevin B. Johnson, MD, MS?, David M. Aronoff, MD®, David S. Carrell (&, PhD?

'Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, United States, *Kaiser Permanente
Washington Health Research Institute, Seattle, WA 98101, United States, *Center for Drug Evaluation and Research, US Food and Drug
Administration, Silver Spring, MD 20903, United States, *Harvard Pilgrim Health Care Institute, Boston, MA 02215, United States,
SDepartment of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States, *Department
of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States

*Corresponding author: Joshua C. Smith, PhD, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Avenue, Suite No.

1400, Nashville, TN 37203 (joshua.smith@vumec.org)

American Journal of Epidamﬂo‘?

@ The Author(s) 2022. Publis! gy Oxford University Prass on behalf of the Johns Hopkins Bloomberg School of
Public Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution
MNon-Commercial License (hitps:/creativecommeons.orglicenses/by-nc/4.0), which permits non-commercial
re-usa, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial
re-uza, please contact journalparmissions @ oup.com.

A

Practice of Epidemiology

hitps://doi_org/10.1093/aje/kwac182
Advance Access publication:
Movember 4, 2022

Improving Methods of Identifying Anaphylaxis for Medical Product Safety
Surveillance Using Natural Language Processing and Machine Learning

David S. Carrell*, Susan Gruber, James S. Floyd, Maralyssa A. Bann, Kara L. Cushing-Haugen,
Ron L. Johnson, Vina Graham, David J. Cronkite, Brian L. Hazlehurst, Andrew H. Felcher,
Cosmin A. Bejan, Adee Kennedy, Mayura U. Shinde, Sara Karami, Yong Ma, Danijela Stojanovic,
Yueqin Zhao, Robert Ball, and Jennifer C. Nelson

* Correspondence to Dr. David Carrell, Kaiser Permanente Washington Health Research Institute, 1730 Minor Avenue, Suite
1600, Seattle, WA 98101 (e-mail: david.s.carrell @ kp.org).

Initially submitted August 11, 2021; accepted for publication October 11, 2022.

i BM) Yale

abora tor

medRyiv

THE PREPRINT SERVER FOR HEALTH SCIENCES

A Follow this preprint

Scalable Incident Detection via Natural Language Processing and Probabilistic

Language Models

Colin G.Walsh, Drew Wilimitis, Qingxia Chen, Aileen Wright, |hansi Kolli, Katelyn Robinson,
Michael A. Ripperger, Kevin B. Johnson, David Carrell, Rishi J. Desai, Andrew Mosholder, Sai Dharmarajan,
Sruthi Adimadhyam, Daniel Fabbri, Danijela Stojanovic, Michael E. Matheny, Cosmin A. Bejan

doi: https://doi.org/10.1101/2023.11.30.23299249

Sentinel System |



Computable Phenotyping

What do we mean by computable phenotyping?

« An attempt to accurately identify a health condition of interest from healthcare
data using combination of various sources of information eg diagnosis codes,
procedures, medications, symptoms in physician notes (aka “features”)

« For many conditions, complex algorithms are needed to integrate various
sources of information to assign probabilities of having the condition of interest
in a patient given her profile

* When these algorithms are created, we typically need to validate our predictions
against some “gold-standard” truth to determine the best approach

Sentinel System | 22



Computable Phenotyping: General Framework

* 5 stages of model development
* Fitness-for-purpose assessment

 Avoid unnecessary complexity
 Leverage automation when feasible
 Design for transportability/reusability

Creating gold standard data
Feature engineering
Model development

Model Evaluation and reporting

o

Data complexity

- Anaphylaxis
Opioid overdose ®
(ED presentation)
®
Severe
@ allergic
reaction
7 K
¢ F
R
NNNONSR
X7 O
QL .&K
b\
Acute
. pancreatitis
Diabetes PY
)
> \e\\ﬁ?}\
Clinical complexity

Sentinel System
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Computable Phenotype: Development Process

« Use of fully-automated algorithms (or models) to determine which patients have a particular
clinical condition (AKA phenotype, health outcome of interest, “is a case”

Cases

Potential

Feature engineering

_————————————————

— S S S T S S S S S— —

All Patients

Slide courtesy of David Carrell

Evaluation
\T/ e e // Sensitivity, PPV, ...
_______________ -
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Manual Feature Engineering

% % = Clinicians % é = Informaticists

Identify Define Implement
Propose targets Review codes  Assemble corpus Write code Create NLP
2888 S8 84 2& @%
@ > Gsas

Review \11</n(;];vledge
% Publed (%3
VT V1

Propose Propose
codes terré3
) gﬂ o
- . ' CLINIC
| EHR W

Slide courtesy of David Carrell

Validate codes Vahda e NLP

B &

ND)MetaMapi

= il ‘
NLP

\l/ Specify logic \l/

G & &

oo Fu

‘l’ Perform QC

%%ﬁ
= @LJ

Assemble datasets

</> </>

11—
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Manual Feature Engineering

%% = Clinicians (% (%f Informaticists

Identify Define Implement

SHE & 28 ad | 88 &&

8 & | ga g# 298
8 8 &&

& E 8 &
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Feature Engineering: Automated

Identify & Define*

(@3% = Clinicians &(%F Informaticists

Implement

o ——

* Yu et al. JAMIA 2015
Slide courtesy of David Carrell

Clinical knowledge
articles >3 articles

@y
Anaphylaxis

Symptoms and causes - Mayo Clinic:

Trusted Health Information for You

y@ MedlinePlus

Home — Medical Encyclopedia — Anaphylaxis

Anaphylaxis

emedicine. medscape.com

Updated: May 16, 2018
Author: S Shahzad Mustafa, MD; Chief Editor: Michael A Kaliner, MD

MERCK MANUAL

Concepts found in >3

articles

- ———

Source CUl Code  Tem
SNOMEDCT_US ~ CD8B3655  abacavir
SNOMEDCT_US ~ CDODO726  Abdomen
SNOMEDCT_US  C1122087  adalimumab
SNOMEDCT_US ~ CDOD1443  Adenosine
SNOMEDCT_US ~ C3536832  Air
SNOMEDCT_US ~ CDOD1S27  Abuterol
SNOMEDCT_US ~ CDOD2055  Akalies
SNOMEDCT_US ~ CDO02082  Allergens
SNOMEDCT_US ~ CDOD2508  Amines
SNOMEDCT_US ~ CDOD2575  Aminophyline
SNOMEDCT_US ~ CDOD2667  Amphetamines
SNOMEDCT_US ~ CD0D2771  Analgesics
SNOMEDCT_US ~ CDOD2792  anaphylaxis
SNOMEDCT_US ~ CDOD2332  Anesthetics
SNOMEDCT_US ~ CD0D2984  Angiosdema
SNOMEDCT_US ~ CDOD2018  Angiotensins
SNOMEDCT_US ~ CDO03232  Artibiotics
SNOMEDCT_US ~ CDOD3241  Antibodies
SNOMEDCT_US ~ CDO0D3320  Artigens
SNOMEDCT_US ~ CDOD3380  Antihistamines
SNOMEDCT_US ~ CDOD2445  Antitoxins
SNOMEDCT_US ~ CDOD3450  Artivenin
SNOMEDCT_US ~ CDOD3467  Amdety
SNOMEDCT_US ~ CDO0D2483  Aota
SNOMEDCT_US ~ CDOD3564  Aphonia
SNOMEDCT_US ~ CD233485  apprehension
SNOMEDCT_US ~ CDOD3842  Adteries
SNOMEDCT_US ~ CDOD4044  Asphyda
SNOMEDCT_US ~ CDOD&057  Aspiin
SNOMEDCT_US ~ C1510438  Assay
SNOMEDCT_US ~ CDOD40S6  Asthma
SNOMEDCT_US  CD231221  Asymptomatic
SNOMEDCT_US ~ CD392707  Atopy
SNOMEDCT_US ~ CDOD425S  Atropine
SNOMEDCT_US ~ CDOD4268  Attertion
SNOMEDCT_US ~ CDOD4271  Attitude
SNOMEDCT_US ~ CDOD4338  Autopsy
SNOMEDCT_US ~ CDOD&521  Astreonam

BEYSERERBUSBEYBERBRNNEEEsIsaRaRaa e ren

SNOMEDCT_US  CD004827  Basophils

(~100 to ~300)

-

l —
40  SNOMEDCT_US  COD005558
41 SNOM

1
1
/

i
ey

Optional:
Remove
non-
specific
concepts

Features
= counts
of each

concept

Patient charts
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4% = Clinicians g% (%f Informaticists

Feature Engineering: Automated

Identify & Define Implement

& &

&

Optional

Slide courtesy of David Carrell Sentinel System | 28



Feature Engineering: Manual vs. Automated

= Cliniclans = Informaticists = Clinicians

Feature engineering: Manual Feature engineering: Automated

Identify Define Implement Identify & Define Implement

Automation advantages:
« Short development time
« Low/no expenditure for domain expertise
« Reduced operator dependence
» Highly replicable
Will it work? As a starting point? As an overall solution?

Slide courtesy of David Carrell Sentinel System | 29



Causal inference requirements: role of advanced methods

Design
Layer

Measures
Layer

Analytics
Layer

Achieve causal
study design

Considering:

* Study question

* Exposure variation
* Measurement

quality

Activity: Outline a framework to help Sentinel Investigators adhere \

-

Achieve causal
analysis

Considering:
+ Confounders
* Follow-up model

Sentinel System
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Activity: 1. Structural Missing Data

Investigations

Clinical Epidemiology Dove

a ORIGIMNAL RESEARCH

A Principled Approach to Characterize and
Analyze Partially Observed Confounder Data
from Electronic Health Records

Janick Weberpals ! Sudha R Ramanz, Pamela A Shaw3, Hana Lee", Massimiliano Russo',
Bradley G Hammill?, Sengwee Toh(®%, John G Connolly®, Kimberly | Dandreo (2%, Fang Tian’,
Wei Liu’, Jie Li’, José | Hernindez-Mufioz Y. Robert | Glynn', Rishi | Desai
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Drug Administration, Silver Spring, MO, USA; *Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care
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Application Notes

smdi: an R package to perform structural missing data
investigations on partially observed confounders in
real-world evidence studies
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Table 2 Diagnostics to Empirically Differentiate and Characterize Missing Data Mechanisms. The Three Group Diagnostics are
Composed of Analytic Models and Tests That Contextualize and Provide Infermation to Differentiate and Characterize Potentially

Underlying Missingness Mechanisms

Group | Diagnostics

Group 1 Diagnostics

Group 3 Diagnostics

without cbserved value of the partially observed covariate.

predict missingness based

on observed covariates.

Diagnostic Absolute Standardized P-value Hnt\alingl'll' Little™ Area Under the Log HR {Missingness

metrie Mean Difference (ASMD) Receiver Operating Indicator)
Curve (AUC)

Purpase Comparisan of distributions betwesn patients with vs Assessing the abilicy to Checle whether missingness

of a covariate is associated
with the outcome

(differential missingnass).

Example value

ASMD = 0.1

p-value = 0.001

AUC =05

log HR = 0.1 (0.05 to 0.2)

Interpretation

<0.1* ne imbalances in observed
patient characteristics;
missingness may be likely
completaly at randem or not at
randem (~MCAR, ~MMNAR).
>0.1" imbalances in observed
patient characteristics;
missingnzss may be likely at
randem (~MAR).

High test statistics and low
p-values indicate differences in
baseline covariate distributions
and null hypothesis would be
rejected (~MAR).

AUC values ~ 0.5 indicate
completzly random or not
at randenm prediction
(=MCAR, ~MNAR).
Valuss meaningfully above
0.5 indicate stronger
relationships between
covariates and missingness
(~MAR).

Mo association in either
univariate or adjusted model
and no mzaningful difference
in the log HR after full
adjustment (~MCAR).
Association in univariate but
nat fully adjusted model
(~MAR).

Meaningful difference in the
log HR. also after full
adjustment (~MMNAR).

Mote: *Analogous to propensity score-based balnce measures.

Abbreviations: ASMD, Median absclute standardized mean difference across all covariates;, ALUC, Area under the curve; Cl, Confidence interval; MAR, Missing at random
mechanism in which the missingness probability depends on observed covariates; MCAR, Missing completely at random mechanism in which each patients has the same
missingness probabiligs MMAR{unmeasured), Missing not at random mechanism in which the missingness can only be explained by a covariate which is not ebserved in the
underlying dataser; MMAR{value), Missing not at randem mechanism in which the missingness just depends on the actual value of the partally cbserved confounder of

irterest tself,
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exposure - age num - female_cat ° smoking_cat ° physical_cat * alk_cat * histology cat ¢ ses_cat ° copd_cat ¢ evemttime * status ° ecog_rat © egfrear ¢

l//”

Dataframe with one row per patient and relevant variables as columns
(exposure, outcome, covariates, partially observed covariates)

2 ridd|a 1

~

J
L =
Descriptives And Pattern Diagnostics
Which covariates exhibit missingness? Summarize and visualize missingness: Identify patterns visually*:
smdi_check_covar{) smdi_summarize() gg_miss_upset()
smdi_na_indicator() smdi_vis() md_pattern() )
.
/ Inferential Three Group Diagnostics e
Group 1 Diagnostics Group 2 Diagnostics Group 3 Diagnostics Group 1-3 Diagnostics
smdi_amsd() smdi_rf() smdi_outcome() smdi_diagnose()

smdi_hotelling()

smdi_little()

\

smdi_style_gt()

If pattern seems non-monotone — run diagnostics on all partially observed covariates jointly, if
monotone consider running diagnostics on each partially observed covariate individually
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Activity 2. Machine Learning Assisted Analytics to
Enhance Confounding Adjustment
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Leveraging Unstructured EHRs for Large-Scale Proxy
Adjustment

(ultra-high dimensional data)

NLP tools turn free-text notes from EHR data into structured features that can serve as
proxy confounding adjustment

Table. Example data structure for 2 cohort studies that include linked claims with NLP generated EHR

features

_ Sample Size Outcome Baseline Covariates

NTotal NTreated NComparator NTotal NTotal NPredeﬁned N**Proxies
21,343 13,576 7,767 899 (4.2%) 14,937 91 14,846
35,031 12,872 22,159 251 (0.7%) 12,464 91 12,373

A Study 1: Effect of NSAIDs versus opioids on acute kidney injury

B Study 2: Effect of high vs low-dose proton pump inhibitors (PPIs) on gastrointestinal bleeding

** Number of claims and EHR features after screening those with prevalence <0.001
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Propensity Score (PS) Models with Ultra-High Dimensional Data

Overfit PS models that include too many variables could lead to reduced covariate overlap, positivity violations

Some degree of dimension reduction is necessary— BUT ideally, without compromising bias reducing
properties

Various approaches for fitting PS models available for this purpose

1. Traditional LASSO (L1 regularization with loss function based on minimizing prediction error of treatment)
2. Outcome adaptive LASSO (forces all variables that predict the outcome in the LASSO PS model)

3. Collaborative controlled LASSO (variable selection based on minimizing empirical loss of the estimate for the target
causal parameter i.e treatment effect)

4. Collaborative controlled, outcome adaptive LASSO (combination of 2 & 3)
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Propensity Score Models with Ultra-High Dimensional Data

Use of cross-fitting to manage overfitting

« Randomly split the data into 10 equally sized non-overlapping groups. The given Lasso model

trained in 9 of the groups. The trained model was then applied to the held-out group to assign
PS.

« Same models described on the previous slides with cross-fitting

5. Traditional LASSO (L1 regularization with loss function based on minimizing prediction error
of treatment)

6. Outcome adaptive LASSO (forces all variables that predict the outcome in the LASSO PS
model)

7. Collaborative controlled LASSO (variable selection based on minimizing empirical loss of the
estimate for the target causal parameter i.e treatment effect)

8. Collaborative controlled, outcome adaptive LASSO (combination of 2 & 3)
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Propensity Score Models with Ultra-High Dimensional Data:

A)

Bias

002 003 004 005

000 0.01

Simulation Results

- - - - o O Crude (Unadjusted)
© Model 1: Lasso ] .
.3 & o Model 2: Outcome Adaptive Lasso (OAL) | No cross-fit of trt
® O e Model 3: Collaborative Controlled Lasso | model
o A ® Model 4: Collaborative Conrolled OAL i
4 Model 5: Cross-Fit (CF) Lasso 7
4 Model 6: CF OAL | Cross-fit of trt
4 Model 7: Collaborative Controlled CF Lasso [ 1,5 qe|
'y 4 Model 8: Collaborative Controlled CF OAL
F
ik
= A
® . A Take home point:
" Advanced analytical approaches can allow for enhanced
! ! | ! ' confounding adjustment using granular data from EHRs
500 2.5K 5K 7.5K 10K

# of Baseline Variables

v

As overfitting increases, models with cross-
fitting, especially 7 & 8, tend to outperform other
models
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Propensity Score Models with Ultra-High Dimensional Data:
Simulation Results

A) B) C) D)
Model 1 Model 2 Model 3 Model 4
O Crude (Unadjusted)
o Model 1: Lasso i
/\ ' o Model 2: Outcome Adaptive Lasso (OAL) No cross-fit of trt
/ , [ ,' e Model 3: Collaborative Controlled Lasso [ model
[ ® Model 4: Collaborative Conrolled OAL
/ ' A Model 5: Cross-Fit (CF) Lasso
f 4 Model 6: CF OAL Cross-fit of trt
( 4 Model 7: Collaborative Controlled CF Lasso [ | o1
/ 4 Model 8: Collaborative Controlled CF OAL
T T T T T T I" T T T I T T T T I-\_.-I T ] T T T -I T
00 02 04 06 08 10 0.0 02 04 06 08 1.0 0o 02 04 06 08 1.0 00 02 04 06 08 1.0 . o
E) Propensity Score F) Propensity Score G) Propensity Score H) Propensity Score What (llkCIV) eXDIalns robust
Model 5 Model 6 Model 7 Model 8
performance:
/ Cross fitting allows for reducing
/ / non-overlap for the overfit
.' collaborative-controlled models
e
T I T I I T T I I I T T I T I T I T ] I I I I I
00 02 04 06 06 1.0 DO 02z 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0
Propensity Score Propensity Score Propensity Score Propensity Score

Propensity score distributions for treated (blue) and comparator (red) groups for one simulated dataset
consisting of 9,500 spurious variables and 500 baseline confounders that ranged in the strength of covariate
effects on treatment and outcome (Scenario 5 consisting of 10,000 total baseline variables)
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Decision Guides to
Integrate Methodologic
Advances with Practice
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Draft Decision Guide for Evaluating Data Fitness for Purpose in Sentinel:
Focus on Outcomes*

. Free-text notes
Is a claims-

Is there based algorithm Consider needed for case

claims-based feasible for the development confirmation
. X and/or " Is the PPV
algorithm endpoint validation of . bl
with a known considering the e ) acceptable
PPV? clinical claims-base Structured data in for the

nuances? algorithm

SCDM sufficient for claims-

p i based
case conrirmation . algorithm?

No
No

: Poes the RWH
s tl:)e cladlmS- DE Comm. Are Structured in EHR
: as.ti h Netw:rrk_ hatve Yes structured or Study in RWE-DE
b G suticien unstructured Comm. Network
sufficient for sample size to

clinical data
required?

the study of address the
interest? stugiy
question?

(PBA)

Unstructured
or both

No

Yes

Is the
outcome a
candidate for

NLP Algorithm Development
in Dev. Network & study in
RWE-DE Comm. Network
(PBA)

Study in the SDD

(ARIA) Do not study in Sentinel computable

phenotype
development
(Uc1)?
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Draft Decision Guide for Evaluating Data Fitness for Purpose in Sentinel:

No, recorded in
free-text EHRs e.g.
LVEF

Are key
confounders
available in
claims?

No, recorded in
structured EHRs
eg HbA1c

Study in the SDD

(ARIA)

Focus on Confounders

More descriptive, fewer assumptions

Option 1: Rapid Balance evaluation
of EHR-measured confoundersin
NLP RWE DE

extraction of
concepts Sufficient

sample size with Primary analysis in
confounder the SDD, supporting
Confounders measuredin analysis in RWE-DE
identified in RWE-DE?
structured

Option 2: Simulation based
quantitative bias analysis for
unmeasured confoundersin RWE
DE

SHES Option 3: Statistical adjustment

using subset calibration methods
in RWE DE

Study in RWE DE v

Cc .Network (PBA . . . .
omm. Network (PBA) More inferential, additional assumptions
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Summary

« Large scale data infrastructure where EHRs are linked to claims data will offer visibility
into additional clinical information that is not available in claims data alone

« Methodological innovations will allow investigators to readily leverage the infrastructure
as needed

« All these activities ultimately will offer opportunities to improve the validity of studies of
medical products in clinical practice and to expand the range of questions that can be
answered through Sentinel
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