

Welcome to the Sentinel Innovation and Methods Seminar Series

The webinar will begin momentarily

Please visit <u>www.sentinelinitiative.org</u> for recordings of past sessions and details on upcoming webinars. Note: closed-captioning for today's webinar will be available on the recording posted at the link above.

A PRocess guide for INferential studies using healthcare data from routine ClinIcal Practice to EvaLuate causal Effects of Drugs (PRINCIPLED)

Rishi Desai, MS, PhD Mass General Brigham and Harvard Medical School

Check for updates

Process guide for inferential studies using healthcare data from routine clinical practice to evaluate causal effects of drugs (PRINCIPLED): considerations from the FDA Sentinel Innovation Center

Rishi J Desai,¹ Shirley V Wang,¹ Sushama Kattinakere Sreedhara,¹ Luke Zabotka,¹ Farzin Khosrow-Khavar,¹ Jennifer C Nelson,² Xu Shi,³ Sengwee Toh,⁴ Richard Wyss,¹ Elisabetta Patorno,¹ Sarah Dutcher,⁵ Jie Li,⁵ Hana Lee,⁵ Robert Ball,⁵ Gerald Dal Pan,⁵ Jodi B Segal,⁶ Samy Suissa,⁷ Kenneth J Rothman,⁸ Sander Greenland,⁹ Miguel A Hernán,¹⁰ Patrick J Heagerty,¹¹ Sebastian Schneeweiss¹

For numbered affiliations see end of the article

Correspondence to: R J Desai rdesai@bwh.harvard.edu (or @RishiDesai11 on Twitter; ORCID 0000-0003-0299-7273)

Additional material is published online only. To view please visit the journal online.

Cite this as: BMJ 2024;384:e076460 http://dx.doi.org/10.1136/ This report proposes a stepwise process covering the range of considerations to systematically consider key choices for study design and data analysis for noninterventional studies with the central objective of fostering generation of Non-interventional studies, also referred to as observational studies, are conducted using real world data sources typically including healthcare data that are generated during provision of routine clinical care (including health insurance claims and electronic health records). These studies provide an opportunity to fill in evidence gaps for questions that have not been answered by randomized trials.¹ However, generating decision grade evidence from healthcare data requires

Motivation

Why do we need another framework?

Perspective

Principles of Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND)

Martijn J. Schuemie 12, Patrick B. Ryan^{1,3}, Nicole Pratt⁴, RuiJun Chen Seng Chan You⁶, Harlan M. Krumholz⁷, David Madigan⁸, George Hripcsak^{3,9}, and Marc A. Suchard^{2,10}

REVIEW Den Access

The Structured Process to Identify Fit-for-purpose Data (SPIFD): A data feasibility assessment framework

Nicolle M Gatto 🕱 Ulka B Campbell, Emily Rubinstein, Ashley Jaksa, Pattra Mattox, Jingping Mo, Robert F Reynolds

First published: 30 October 2021 | https://doi-org.ezp-prod1.hul.harvard.edu/10.1002/cpt.2466

Why do we need another framework?

What do we have?

• Various tools exist in the literature for quality assessment, reporting, and describing best practices for pharmacoepidemiologic research

What don't we have?

• None of these tools offer a general framework to guide decision making at various steps when designing a study to answer a causal question

Vision for a framework to guide principled investigations using healthcare data

- The Sentinel Innovation Center has developed a causal inference framework proposing <u>a stepwise process that</u> <u>systematically considers key choices</u> with respect to design and analysis that influence the validity of non-interventional studies conducted with healthcare data
- A standardized process outlined in this framework will serve as <u>a guide to inform the conduct</u> of noninterventional studies using healthcare data for drug-outcome evaluation
- Key considerations to meet the FDA need of informing regulatory decision making based on such investigations
 - Limit variations in practice across investigators by outlining a general process
 - Focus on repeatability of the process
 - Written and endorsed by independent experts

Overview of the Process

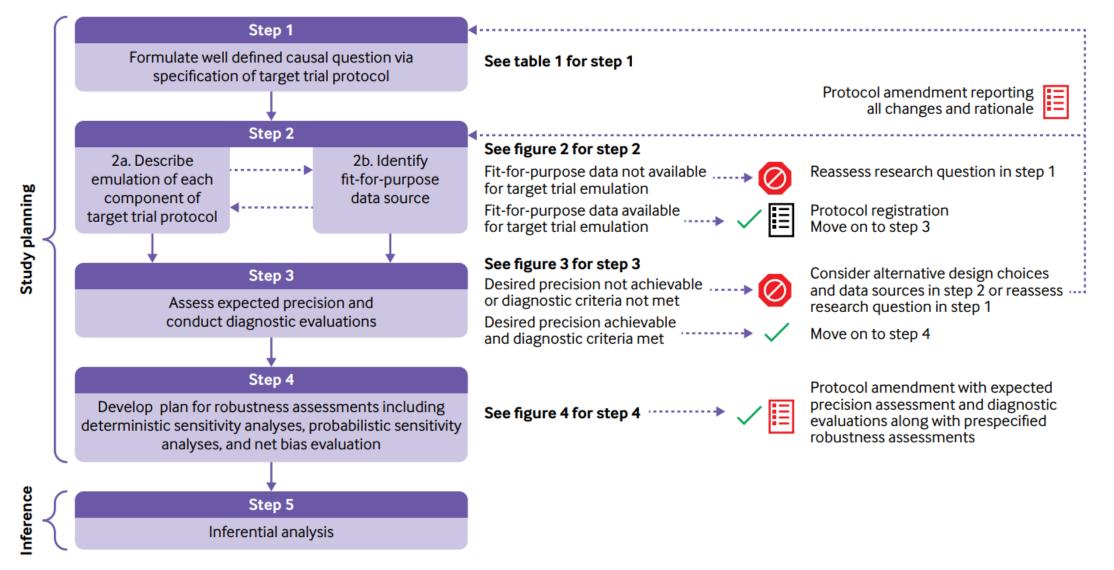


Fig 1 | Overview of the process guide for inferential studies using healthcare data from routine clinical practice

Step 1: Specification of the target trial protocol

Table 1 Target trial protocol for case example study evaluating the effect of sodium-glucose cotransporter-2 (SGLT-2) inhibitors on genital infections						
Element	Specification	Emulation using real world data sources				
Eligibility criteria	Patients with type 2 diabetes mellitus; aged ≥65 years; no use of study drug treatments before randomization; no history of end stage renal disease, HIV, or genital infections; continuous Medicare A, B, D enrolment for six months and recorded glycated hemoglobin (HbA ₁ c) test results in electronic health records in six months before treatment initiation	Same as target trial				
Treatment strategies	Initiation of (1) SGLT-2 inhibitors (canagliflozin, dapagliflozin, empagliflozin); or (2) DPP-4 inhibitors (alogliptin, linagliptin, saxagliptin, sitagliptin). Under both strategies, use of antidiabetic treatment after initiation is left to physician and patients' discretion	Same as target trial				
Treatment assignment	Randomized, non-blinded	Non-blinded and assumed to be randomized within levels of measured confounders*				
Follow-up start (time 0)	At assignment	Same as target trial				
Follow-up end	First of administrative end of follow-up (day 365), loss to follow-up, death, or outcome occurrence	Same as target trial				
Primary outcome	Genital infections	Same as target trial				
Causal contrast	Intention-to-treat effect (effect of being assigned to the treatment)	Observational analogue of intention-to-treat effect				

SGLT-2=sodium-glucose cotransporter-2; DPP-4=dipeptidyl peptidase-4; HbA1c=glycated hemoglobin.

*Measured confounders include demographics (age, sex, race, socioeconomic status markers), diabetes severity related variables including microvascular and macrovascular complications, measures related to diabetes control such as HbA_{1c}, comorbid conditions, cotreatments, markers for healthy behavior, and healthcare use.

Step 2a: Describing the emulation of each component of the target trial protocol

- A structured protocol detailing operationalization of ٠ variable definitions, including all codes and algorithms used for eligibility criteria, treatment strategies (including treatment initiation and discontinuation), outcomes, and confounders
- Other considerations include statistical analysis plans for the primary analysis
- Example of a template- STaRT RWE² ۲

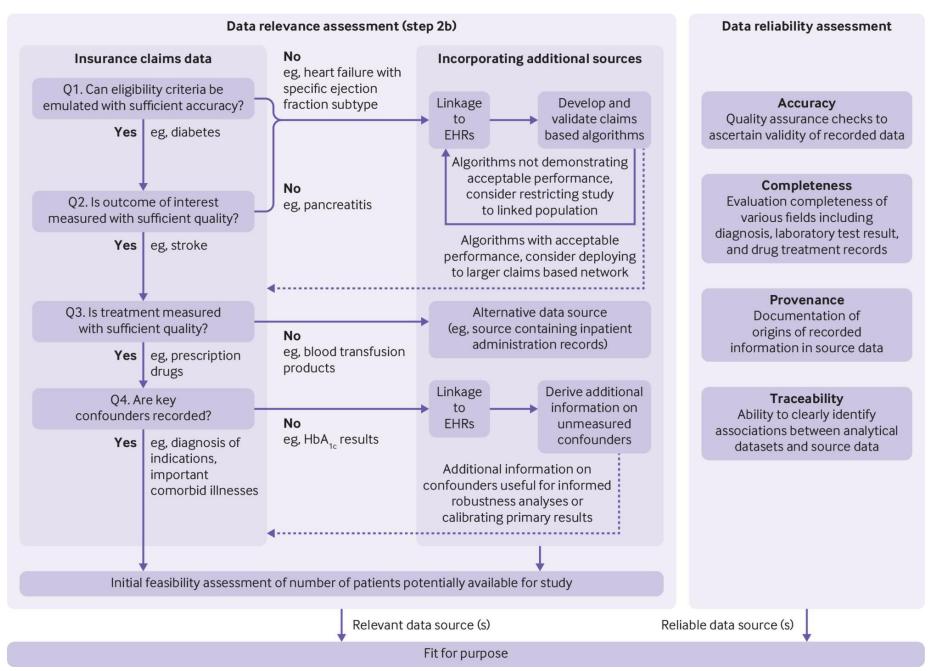
In alignment with the International For numbered affiliations see end

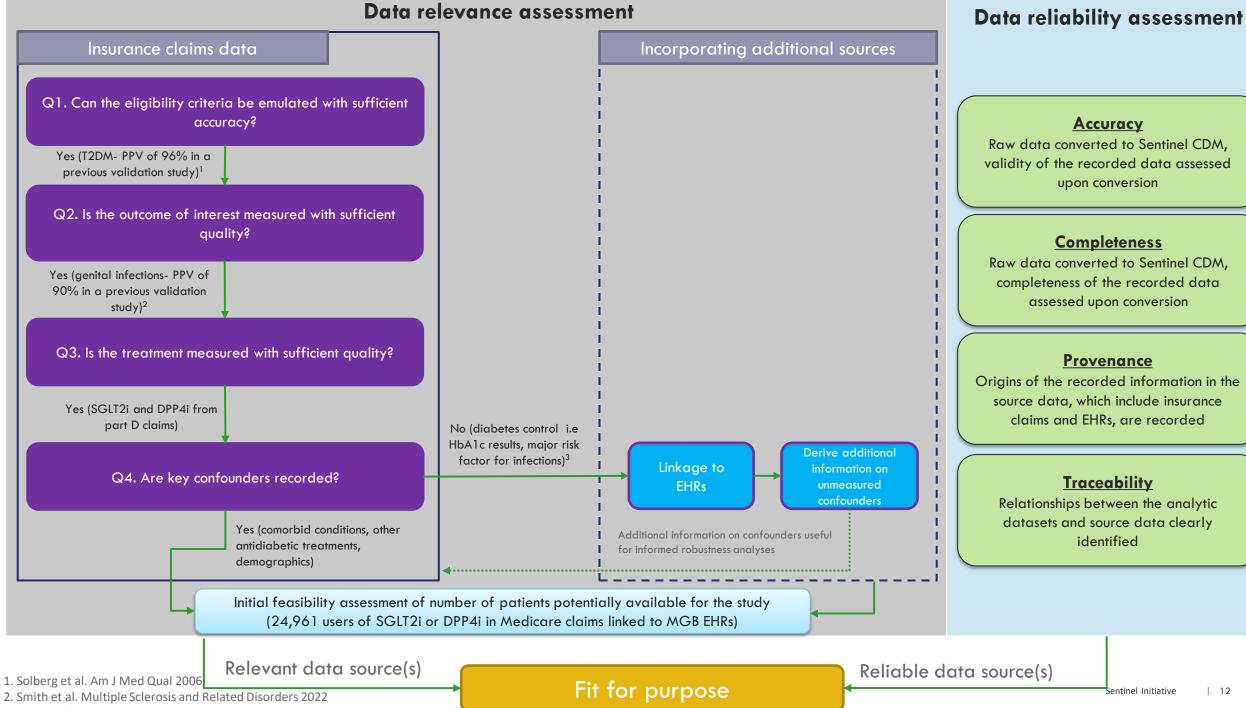
Correspondence to: SV Wang, Division of Pharmacoepidemiology and Pharmacoeconomics. 1620 Tremont Street, Suite 3030, Boston, MA 02120, USA swang1@bwh.harvard.edu (ORCID 0000-0001-7761-7090) Additional material is published online only. To view please visit the journal online. Cite this as: BMJ 2021;372:m4856 http://dx.doi.org/10.1136/bmj.m4856 Accepted: 10 December 2020

of the article.

RESEARCH METHODS AND REPORTING

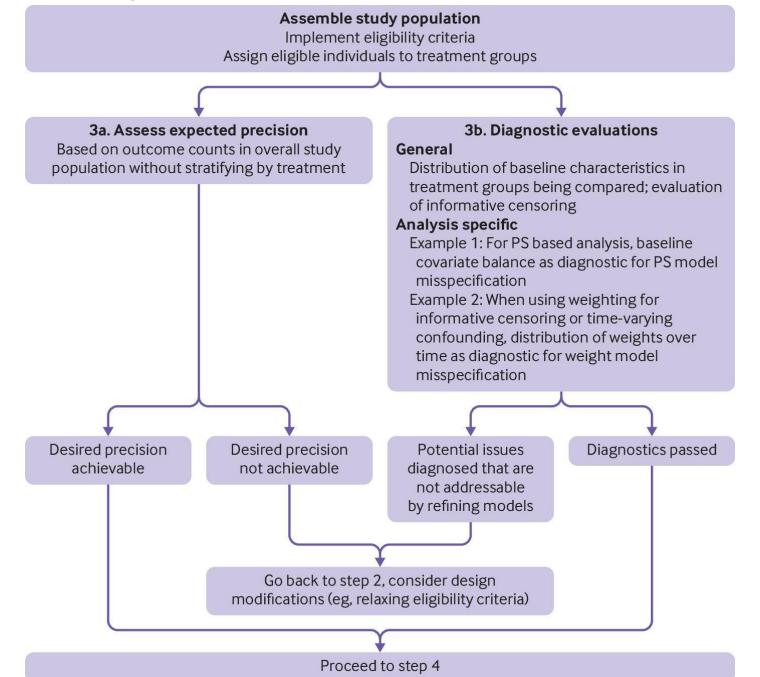
OPEN ACCESS STaRT-RWE: structured template for planning and reporting on the implementation of real world evidence studies Check for updates

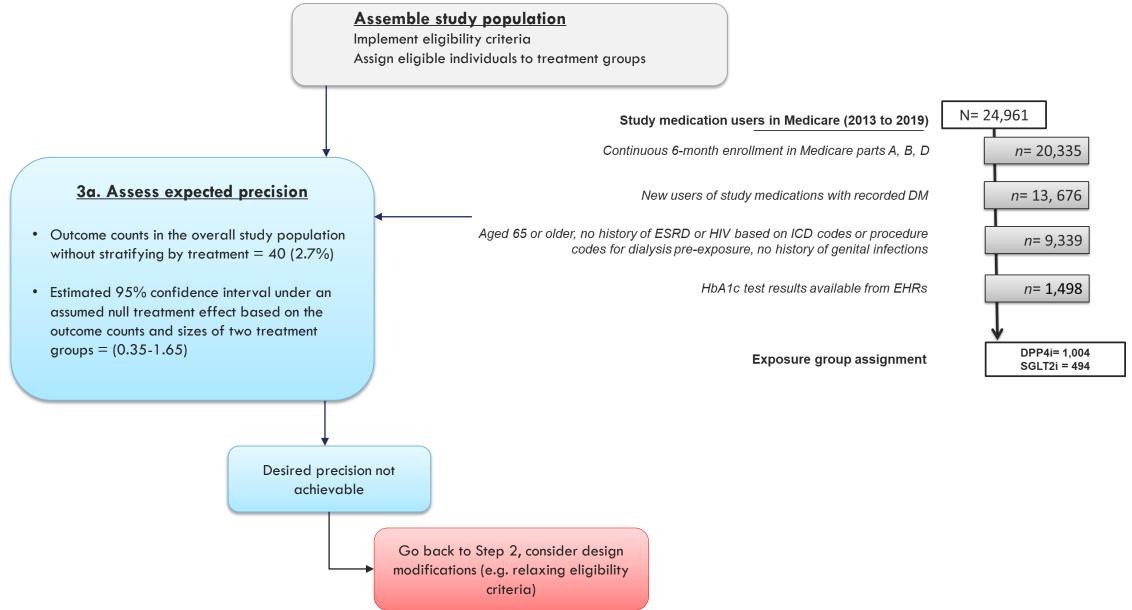

Shirley V Wang,¹ Simone Pinheiro,² Wei Hua,² Peter Arlett,^{3,4} Yoshiaki Uyama,⁵ Jesse A Berlin,⁶ Dorothee B Bartels,⁷ Kristijan H Kahler,⁹ Lily G Bessette,¹ Sebastian Schneeweiss¹


Council of Harmonization's strategic goals, a public-private consortium has developed a structured template for planning and reporting on the implementation of real world evidence (RWE) studies of the safety and effectiveness of treatments. The template serves as a guiding tool for designing and conducting reproducible RWE studies; set clear expectations for transparent communication of RWE methods; reduce misinterpretation of prose that lacks specificity; allow reviewers to quickly orient and find key information; and facilitate reproducibility, validity assessment, and evidence synthesis. The template is intended for use with studies of the effectiveness and safety of medical

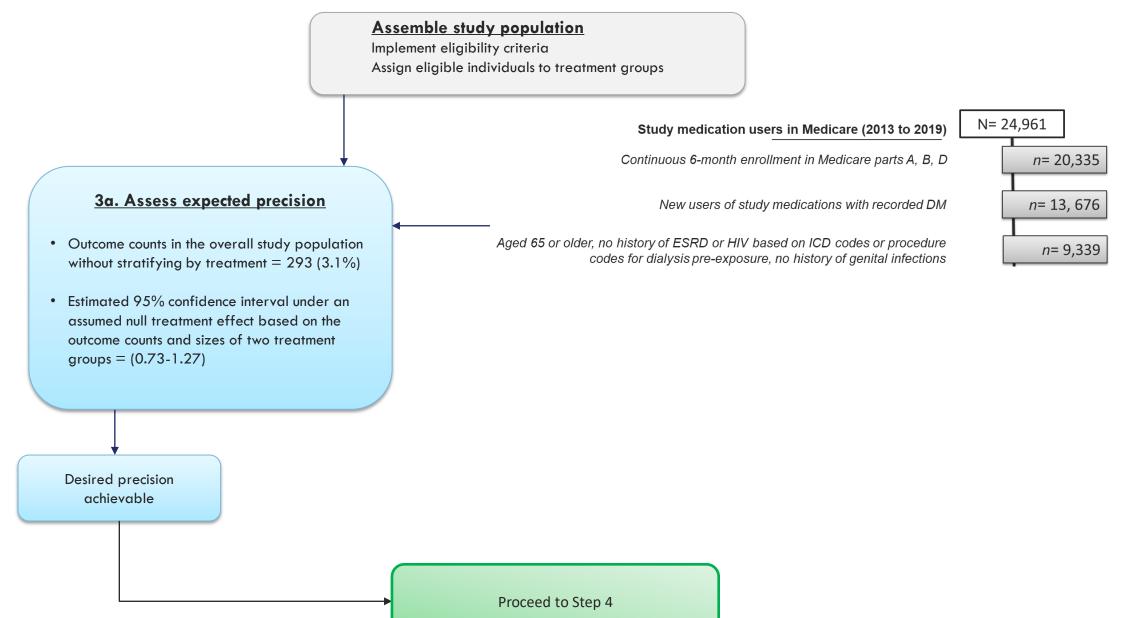
products and is compatible with multiple study designs, data sources, reporting guidelines, checklists, and bias assessment tools.

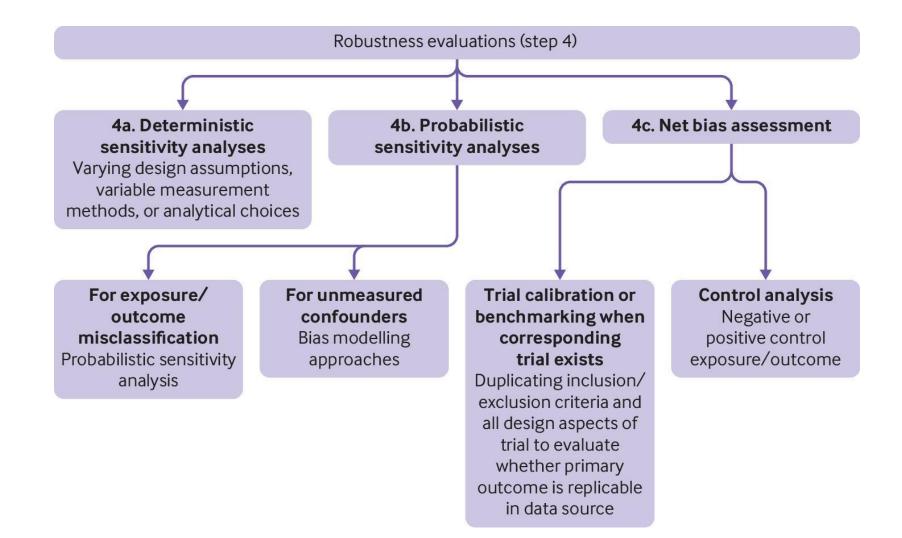
Real world evidence (RWE) generated from sources of real world data via the application of principled database epidemiology increasingly informs important decisions about the clinical effectiveness of medical products and interventions.1-5 Unlike clinical trials, which can leverage the power of randomisation, or non-randomised studies with prospective data collection for a specific research purpose, most RWE studies make secondary use of electronic data collected as part of routine healthcare processes (eg. administrative claims and electronic health records). Generating high quality evidence when analysing data not collected for research purposes requires decision making about many complex design and analytical parameters to handle temporality, measurement, confounding, and other potential sources of bias. Compared with trials and non-experimental studies that prospectively collect data for a research question, RWE studies have greater variability in design and analysis options. Owing to the current lack of structure in study reporting, assessment of RWE studies often

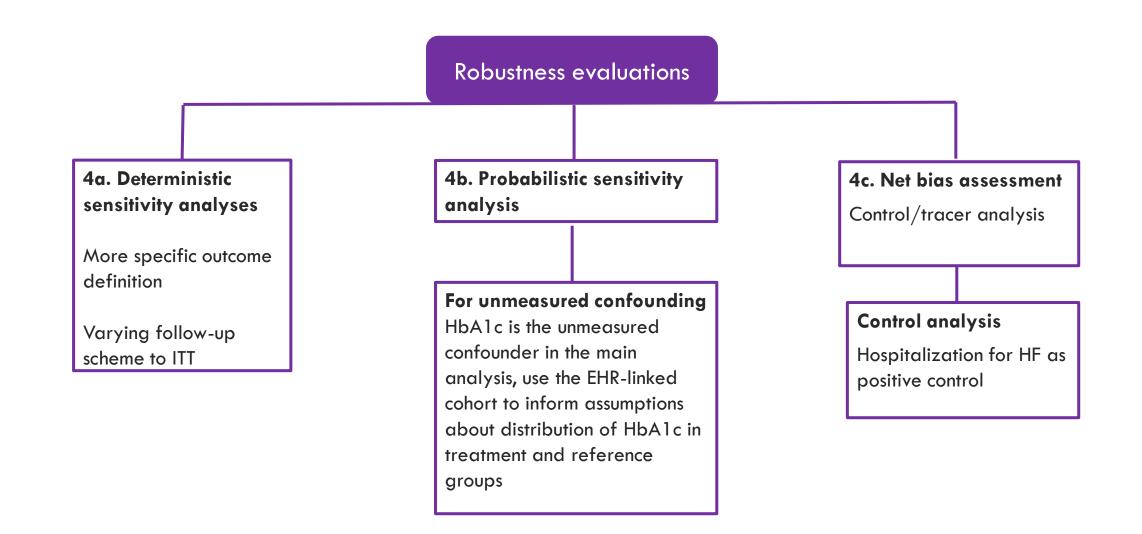

Step 2b: Identify fit-for-purpose data



3. Mor et al. AJE 2017


Step 3: Expected precision and diagnostics


Step 3: Expected precision and diagnostics (case-example)



Step 3: Expected precision and diagnostics (case-example)

Step 4: Robustness evaluations

Step 5: Inferential analysis

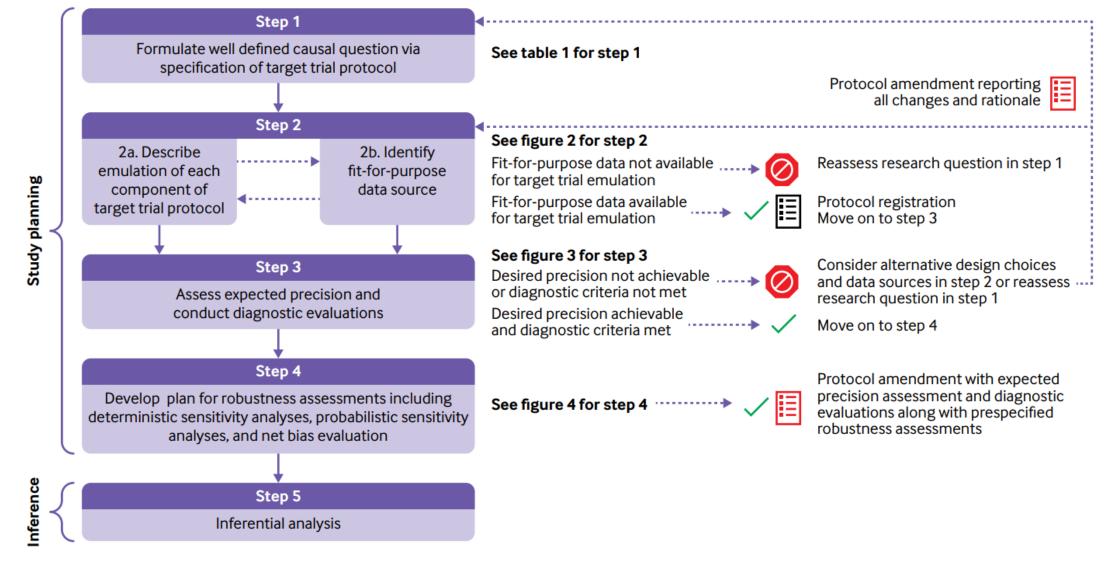
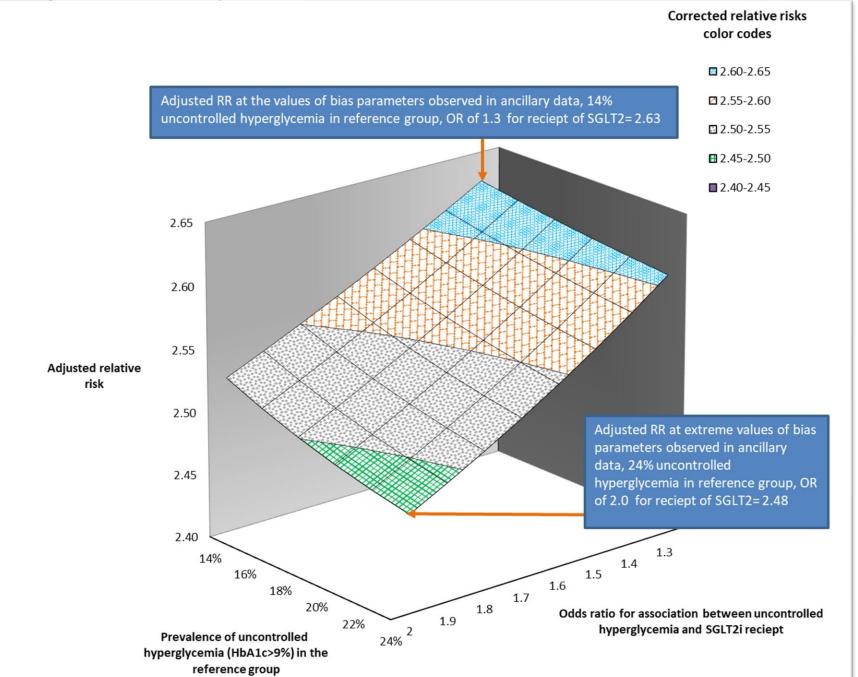



Fig 1 | Overview of the process guide for inferential studies using healthcare data from routine clinical practice

Variable	SGLT-2	DPP-4 inhibitors		Hazard ratio (95% CI)	Hazard ratio (95% Cl)
Primary analysis				1	
Full cohort	123/1553	170/5785			- 2.68 (1.86 to 3.86)
Male sex	41/912	54/2781			- 2.32 (1.21 to 4.46)
Female sex	82/620	134/3055			- 3.00 (2.08 to 4.32)
Age <75 years	77/1026	77/2755			- 2.69 (1.84 to 3.93)
Age ≥75 years	44/500	81/3068			3.32 (2.04 to 5.41)
With history of infection risk factors	67/655	80/2821			3.60 (2.48 to 5.23)
Without history of infection risk factors	56/886	90/2910			- 2.04 (1.07 to 3.91)
Robustness evaluations					
Sensitivity analysis: more specific outcome definition	47/1596	68/5826			- 2.51 (1.54 to 4.11)
QBA: correcting for unmeasured HbA _{1c}	-	-			2.63 (1.82 to 3.78)
Positive control outcome: heart failure hospital admission	23/1612				0.55 (0.34 to 0.91)
		C	.25 0.5	1 2	4 8

Step 5: Inferential analysis (case-example)

Summary

- We introduced a stepwise process that systematically considers key decision nodes for evaluating causal effects of treatments using healthcare data
- The process outlined in this framework can facilitate transparent communications between various stakeholders and motivate critical considerations for the clinical research community

Thank You

Contact: rdesai@bwh.Harvard.edu