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Disclaimer

 This work was supported by Task Order 75F40119F19002 under Master
Agreement 75F40119D10037 from the U.S. Food and Drug Administration
(FDA).

« The views expressed in this presentation represent those of the presenter and do
not necessarily represent the official views of the U.S. FDA.
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Introduction

« Sentinel is the U.S. FDA’s active medical product safety surveillance system
utilizing electronic healthcare records (EHRs) and claims data.

* One of the goals of the Sentinel Innovation Center is to develop, implement,
and evaluate methods that incorporate unstructured EHR data to improve the
performance of computable phenotype algorithms used to capture health
outcomes relevant to medical product safety surveillance.
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Introduction

 Sentinel Innovation Center (IC) Demonstration Project to integrate
unstructured EHR data into Sentinel

« “Advancing scalable natural language processing approaches for unstructured
electronic health record data”

* In this study, we evaluated an automated phenotyping method (PheNorm)
applied to an acute condition, COVID-19 disease, to investigate its feasibility for
rapid phenotyping and use in post-market safety studies.
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Background

* Phenotyping algorithms are used in healthcare, epidemiological
studies, and public health surveillance to distinguish between cases
and non-cases.

« Methods range from the use of International Classification of Disease
(ICD 9/10 codes) to the presence of multiple codes, medications, or
laboratory results.

» These algorithms have typically been developed and validated using
time-intensive expert curation and manually annotated gold-
standard training sets, which result in high costs, long
development timelines, and limited scalability.
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Automated Modeling: Motivation

Manual development

e Expert-driven

 Manual engineering

* Heavy reliance on gold
standard labels

e Substantial operator
dependence

* Slow

&

Automated development

e Data-driven

 Automated engineering

 Heavy reliance on silver
standard labels

* Reduced operator
dependence

* Fast
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Automated Modeling: Approach

AFEP

Principles: 1. Clinical text is the primary data source
2. Published knowledge provides expertise

Toward high-throughput phenotyping:
unbiased automated feature extraction and
selection from knowledge sources
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ABSTRACT

Objective Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale pheno
research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive ani
main experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatj
informative features, which can be comparable to expert-curated ones in classification accuracy.
Materials and methods Comprehensive medical concepts were collected from publicly available knowledge source}
fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative note|
informative features for phenotype classification. When combined with additional codified features, a penalized o
trained to classify the target phenotype.

Results The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and cf
among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating cl
classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compari
0.929 by models trained with expert-curated features.

Discussion Models trained with NLP text features selected through an unbiased, automated procedure achieved cony
curacy than those trained with expert-curated features. The majority of the selected model features were interpretabld
Conclusion The proposed automated feature extraction method, generating highly accurate phenotyping algorithms
significant step toward high-throughput phenotyping.

INTRODUCTION

Electronic health record (EHR) adoption has increased dramatically in
recent years. By 2013, 59% of private acute care hospitals in the
United States had adopted an EHR system, up from 9% in 2008.'
Secondary use of EHR data has emerged as a powerful approach for a
variety of biomedical research, including comparative effectiveness
and stratifying patients for risk of comorbidities or adverse out-
comes.”~"® More recently, the linking of genotype and biomarker data
to EHR data has facilitated translational studies, such as genetic asso-
ciation studies."'~"” Compared to conventionally assembled epidemio-
logic and genomic cohorts that require individual patient recruitment,

narrative notes such as physician notes, 1
or pathologic studies, or hospital disch:
provide a rich source of complementary i
processing (NLP) can efficiently extract g
Occurrences of terms of clinical concepts
and also used as features for algorithm
ing algorithms that use both codified and
accuracy relative to algorithms using codi
9 billing codes).'*%

Today, algorithms that identify a des|
structed in two rather different ways. The
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EHR-based studies can provide large sample sizes at a lower cost and ing on human expertise to suggest a logi
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Automated Feature Engineering
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Feature Engineering: Manual vs. Automated

Manual feature engineering LSS Automated feature engineering - G - fermanca:

Identify Define Implement Identify & Define Implement

Advantages of automation:
 Short development time
« Low/no expenditure for domain expertise
« Reduced operator dependence
 Replicable

Will it work? As a starting point? As an overall solution?
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Automated Modeling: Approach

« Developed by Yu, et al., PheNorm has been demonstrated to perform well
outside Sentinel for chronic health conditions, but little was known about its
performance in acute conditions.

« PheNorm is a general-purpose automated approach to creating computable
phenotype algorithms based on natural language processing (NLP) and machine
learning.

- PheNorm estimates each patient’s probability of being a true case using silver-
standard labels (readily available approximations for true case status) and
NLP-derived features extracted from clinical notes.

Sentinel Initiative | 14
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PheNorm Applied to COVID-19 Disease

« Coronavirus disease 2019 (COVID-19) was first identified in December
2019. During the pandemic, diagnostic guidelines, laboratory testing, coding
practices, and treatment options changed rapidly.

« We developed a phenotyping algorithm for symptomatic COVID-19

= Diagnostic codes for COVID-19 have been shown* to have low accuracy,
which may be due to both over-coding and under-coding.

= Since we were interested in symptomatic disease, evidence of infection
alone was insufficient since many patients who tested positive were
asymptomatic.

*Lynch, et al. Positive predictive value of COVID-19 ICD-10 diagnosis codes across calendar time and clinical setting. Clin Epidemiol. 2021.



Study Cohort

 This study was performed at Vanderbilt University Medical Center
(VUMC) and Kaiser Permanente Washington (KPWA).

« We identified cohorts of potential COVID-19 patients from April 2020 through
March 2021 at each site.

* Cohorts included all patients with encounters accompanied by structured EHR
features found to be strongly associated with COVID:

 Six ICD-10-CM diagnosis codes for COVID-19 and related complications
* 43 other codes (diagnoses, problems, procedures, medications, labs)

e The VUMC cohort included both inpatient and outpatient encounters;
the KPWA cohort included outpatient only.
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Index Date and Exclusion Criteria

« In PheNorm, a fixed data catchment period anchored to a patient-specific index
date identifies data used to operationalize silver labels and features.

« The earliest encounter for each patient with any structured evidence of COVID-
19 disease was used as index date.

e Our catchment period was index date £30 days, which we consider likely to
include relevant and exclude unrelated information.

« Eligible patients included adults (age 18+ years) with at least one encounter and
>1000 characters of clinical text.

Sentinel Initiative | 18



Silver Labels

- PheNorm replaces scarce, costly gold-standard data with silver-standard data
during model training.

 As silver labels are imperfect representations of true-case status, the PheNorm
methods suggests considering multiple alternative versions of silver labels.

« We therefore used information from each patient’s data catchment period to
operationalize 4 silver-standard labels that used either structured data or
NLP-derived data.

Sentinel Initiative [ 19



Silver Labels

1.

2.

Structured Label 1: Count of calendar days with a COVID-19 diagnosis code
(U07.1), including both outpatient visits and inpatient days

Structured Label 2: Count of calendar days with any of 6 COVID-19-related
diagnosis codes: U07.1, J12.81, J12.82, B34.2, Bg7.21, B97.29

. NLP Label 1: Count of the number of mentions of the term “COVID-19” in

chart notes

NLP Label 2: Count of chart notes with an NLP-identified UMLS concept for
COVID-19 disease (C5203670)

Sentinel Initiative | 20



Features

« Machine learning models use features (variable, covariates) as
input to produce an output based upon training data.

 Input features are usually based on structured data, such as diagnosis codes
or laboratory values

« PheNorm’s primary features are NLP-extracted “clinical concepts”
mentioned in the unstructured text of clinical notes.

« We processed all clinical notes within a patient’s catchment window using the
MetaMap Lite NLP tool to identify clinical concepts mentioned in the text,
represented using UMLS Concepts.

Sentinel Initiative [ 21



Structured Data

PheNorm uses primarily NLP-extracted features as the input to the predictive
models, however, useful structured data can also be included as model features.

In this study, we operationalized two structured data features:

» patient sex (as captured in the EHR)
* patient age (in years)

Sentinel Initiative | 22



Feature Engineering

However, “all clinical concepts” mentioned in patients’ notes is a very large

features space.
Most of these concepts are likely uninformative.

Like most phenotyping algorithms, PheNorm limits the input features to those

that are relevant to the Health Outcome of Interest.

As described earlier, we utilized the AFEP approach to automated feature

extraction to define a “dictionary” of relevant concepts.
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Feature Engineering: NLP Dictionary Creation

Automating Feature Engineering (AFEP)
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Feature Engineering: Additional Options

« NLP Features for PheNorm are basically counts of mentions of clinical concepts
within patient notes (in the catchment window). However, additional options
can be considered:

* Negation: Count concepts negated in text? (e.g., “No fever”)

 Normalization: Longer notes have more concepts; is that information useful,
or misleading?

 Dimension Reduction: May yield simpler models without sacrificing
performance by removing duplicative or less-informative features.
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Feature Engineering: Additional Options

Feature engineering options

Model Exclude negated Normalize by patient’s Dimension reduction pre- Scientific question
set mentions chart length modeling
1 No No No Does simple feature engineering yield sufficient

model performance?

2 Yes No No Does excluding NLP negation improve
performance (vs Model set 1)?

3 No Yes No Does normalizing features improve performance
(vs Model set 1)?

4 No No Yes Is performance preserved in models based on
reduced feature sets?

5 Yes Yes Yes Do all feature engineering options combined
improve performance?



Modeling

« We developed models for all 8 logical combinations of those options
(negation, normalization, and dimension reduction).

« Each of these 8 model sets included 5 PheNorm models,
* One for each of the 4 silver labels

o A fifth aggregate model is the average of the predicted
probabilities from the 4 silver-label models

* 40 models total

* We trained these models using data from patients without gold-standard
case labels and evaluated the models using data from a set-aside sample of
patients with gold-standard labels.
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Gold-Standard Sample

« PheNorm uses silver labels for training, but gold-standard data is necessary
for evaluation.

« We used manual chart review to create the gold-standard data used to
evaluate our PheNorm models from a stratified random sample of patients.

 Trained chart abstractors following written guidelines assigned phenotype
positive labels to patients with evidence of at least possible SARS-COV-2
infection and at least symptomatic COVID-19 disease, and phenotype
negative labels to all other patients.

 Inter-rater agreement assessed using two reviewers at each site.

Sentinel Initiative | 28



Methods — Evaluation & Outcomes

Evidence of COVID-19 Infection Severity of Illness Scale (NIH)
. . . . SEVERITY LEVEL SIGN/SYMPTOM
Definite or highly probable infection . e —
« PCR-positive or explicit positive assertion Mild Fever (>=100.4F)
Cough
Probable or possible infection Sore throat
Malaise/fatigue
« Symptoms are consistent with a diagnosis of COVID-19 Foadache
and absence of an explicit alternative diagnosis y .
uscle pain
o [ ] [ ] N
Unlikely infection et
Vomiting
 Explicit alternative diagnosis or statement ruling-out Diarrhea
COVID 19 and absence of relevant symptoms/labs Loss of sense of taste or smell
Moderate Shortness of breath (SpO2 >=94%)
Not lnfected Dyspnea (Sp02 >=94%)
* No indication in the EHR of infection foome hes Tegno (Bpoz
Severe Sp02 <94%
Insufficient Information PRCPIRRE soh o 7
Respiratory freq >30 breaths/min
Lung infiltrates >50%




Results
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Results

Study Cohorts
* VUMC: 24,177 patients, approximately 1.1 million notes
- KPWA: 8,329 patients, 143,584 notes

Gold-standard evaluation sample
 VUMC: 419 patients (Cohen’s kappa 0.951)
- KPWA: 437 patients (Cohen’s kappa 0.802)
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Results

Characteristics of the study
cohorts at VUMC and KPWA

Characteristic
All patients
Sex is female
Age group
18-29 years
30-49 years
50-69 years
70+ years
Race is White

Ethnicity is Hispanic

VUMC

Count

24 177

14 025

5645

8131

7433

2968

16 407

1018

Percent

100

58

23

34

31

12

68

4

KPWA

Count

8329

4837

1104

2503

3126

1596

5335

756

Percent

100

58

13

30

38

19

64



Results

* The AUCs across all PheNorm models ranged from 0.770 to 0.804 at VUMC and
0.801 to 0.853 at KPWA.

* Model PPVs (at maximum F1 score) ranged from 0.858 to 0.903 at VUMC and
0.772 to 0.876 at KPWA.

« The VUMC model with highest AUC was trained on Structured Label 2, without
excluding negated mentions, feature normalization, or dimension reduction.

* The highest-AUC KPWA model was also trained on Structured Label 1, with
feature normalization, without excluding negated mentions or dimension
reduction.
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Results

Best performing
model sets at each
site when maxi-
mizing F1 Score

Study site (model
set)

VUMC (model set 1)

Negation: NO
Normalize: NO
Dim. Reduc: NO

KPWA (model set 3)

Negation: NO
Normalize: YES
Dim. Reduc: NO

Silver AUC Max. Sensi- Speci- PPV NPV
label F1 tivity ficity
Struc. 1 0.802 0.927 0.976 0.214 0.883 0.597
Struc. 2 0.804 0.929 0.976 0.234 0.885 0.617

d )
NLP 1 0.788 0.937 0.982 0.309 0.896 0.743
NLP 2 0.775 0.937 0.982 0.306 0.896 0.741

\ Agg. 0.786  0.937 0.982 0.306 0.896 0.741 )
Struc. 1 0.853 0.865 0.879 0.662 0.851 0.713
Struc. 2 0.851 0.862 0.875 0.662 0.850 0.706
NLP 1 0.819 0.861 0.945 0.451 0.791 0.789
NLP 2 0.833 0.869 0.949 0.482 0.801 0.812
Agg. 0.847 0.867 0.949 0.472 0.798 0.809



PPV =0.90
Model Perfof . '~ -7

A) VPMVC, ModeT Set 1, Structured 2 Silver Label

1.00 -
0.75-

Performance metric

=== Sensitivity
E === Specificity
EGSG = PPV
o —— NPV
— F1
~= F0.5
0.25-

0.00 0.25 0.50 0.75

1.00
Percentile Cutpoint

Sentinel Initiative | 35



PPV =90
Model Performance

B) KPWA, Mod4TSet 3, structured 1 Silver Label
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Model Transportability

In addition to testing local models on local data, we also tested each others’ models
on local data, producing surprisingly good results.

AUC

1.000
0.950
0.900
0.850
0.800
0.750
0.700
0.650
0.600
0.550
0.500
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Discussion

« Model performance varied by silver label, but models trained on structured data
labels generally had higher AUCs at both sites.

» Performance also varied when using alternative feature engineering options, but
all yielded strong performance.

« Excluding negated mentions and normalizing feature counts had little impact on
model performance; and dimension reduction produced models with strong
performance based on fewer features.

 Overall, these changes/additions only minorly affected performance.
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Discussion

 Using cut-points of model-predicted probability that yielded greater than or
equal to 80% PPV (a commonly used “benchmark”) yields sensitivities of 0.999
in the best VUMC model and 0.905 in the best KPWA model.

» Performance metrics and levels suitable for addressing different specific
scientific questions may be achieved by selecting different cut-points of
predicted probability.
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Discussion

At both study sites the performance of externally trained models was generally
similar to that of internally trained models.

At VUMC, the AUC of the best externally trained model was 0.804, compared to
0.817 for the best locally trained model.

At KPWA, the AUC of the best-performing externally trained model was 0.834,
compared to 0.853 for the best locally trained model.

At least for this phenotype, this evidence of transportability of models is
promising.
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Limitations

* We used data from early in the COVID-19 pandemic, which may introduce
idiosyncrasies relative to other phenotypes and time periods.

« We used data from only 2 healthcare settings which, though diverse, may not be
representative of other settings.

 The positive predictive value of the COVID-19 ICD code at VUMC was higher
than expected (85%), but PheNorm still resulted in improved performance.

* More work should be done to assess PheNorm performance on other acute
phenotypes .
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Conclusions

« The PheNorm approach can successfully identify an acute health condition,
COVID-19 Disease.

 Tools such as PheNorm, utilizing unstructured EHR data, can support rapid
phenotyping for public health surveillance.

* Preliminary results indicate that models trained at one site may be transportable
to other sites with little decrease in performance.

 The simplicity of the PheNorm approach allows it to be applied at multiple study
sites with substantially reduced overhead compared to traditional phenotyping.
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