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Motivation

Important confounders or covariates are often missing in
pharmacoepidemiologic studies.
• In FDA’s Sentinel Innovation Center:

• sources link data from administrative claims and electronic health
records (EHR)

• certain clinical data (e.g., vital signs) are not available on individuals
with claims data only

• More generally:
• Invasiveness (e.g., biopsy)
• Expense (e.g., novel biomarkers)

Prior work within Sentinel Innovation Center:
• Investigated inverse probability weighting (IPW), complete case,

missingness indicator, single imputation (missForest), MICE
(default), MICE (CART), MICE-RF (random forest)

• Considered 10–50% missing data, under MCAR, MAR, MNAR

• Found MICE (default) and MICE-RF had best overall performance

4



Motivation

Building on prior work, we sought to:
• Compare MICE and MI-RF to two more robust methods

• generalized raking, commonly used in surveys or two-phase samples
• targeted maximum likelihood estimation, allowing machine learning

• Consider performance of methods under higher levels of missingness:
40–80%

• Create synthetic data scenarios that challenge each method

• Investigate performance in a realistic plasmode scenario

5



KPWA Antidepressant Initiator (ADI) cohort

Kaiser Permanente Washington (KPWA) is an integrated health care
system in the Pacific Northwest that provides care and health insurance
to over 700,000 members.

Our sample:
• 112,770 adults at KPWA aged 13+ years, initiating antidepressant

medication or psychotherapy from January 1, 2008 to December 31
2018

• Key confounders:
• 9-item Patient Health Questionnaire (PHQ-9)
• First 8 items (PHQ-8) measure depressive symptoms
• Ninth item (PHQi9) measures suicidal ideation

• 55% missing the PHQ-9 (50,337 individuals with complete data)

• Outcome: composite outcome of self-harm (fatal or non-fatal) or
psychiatric hospitalization within 5 years following treatment
initiation (5193 events, 10.3%)
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Missing data as a two-phase design

Phase 1 (always observed): Measure (Xi ,Zi ,Yi ) for i = 1, . . . ,N subjects
• Xi : binary treatment

• Zi : confounders

• Yi : binary outcome

Phase 2: Variables only available on a subset
• Wi : additional confounders (e.g., PHQ-8, PHQi9)
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Missing data as a two-phase design
Goal: estimate a treatment effect, e.g.,
• average treatment effect (ATE):

E{E (Y | X = 1,Z ,W )} − E{E (Y | X = 0,Z ,W )}
• conditional log odds ratio: parameter β1 from model

logitP(Y = 1 | X = x ,Z = z ,W = w) = β0 + β1x + β2z + β3w

Traditional two-phase study design: individuals selected into phase 2 with
sampling probability πi

Missing data setting: πi are not known and need to be estimated

Key functionals:
• Outcome regression:

Q ≡ Q(x , z ,w) = E (Y | X = x ,Z = z ,W = w)

• Missing-data model: setting ∆ = 1 if observed,
π ≡ π(x , y , z) = P(∆ = 1 | X = x ,Y = y ,Z = z)

• Propensity score model: g ≡ g(z ,w) = P(X = 1 | Z = z ,W = w)
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Choosing an estimand

A key step in any data analysis is choosing a target of estimation
(estimand).

Treatment-specific mean outcome values:

µ1 = E{E (Y | X = 1,W ,Z )}
µ0 = E{E (Y | X = 0,W ,Z )}

Estimands we consider:
• marginal risk difference (mRD): µ1 − µ0

• marginal relative risk (mRR): µ1/µ0

• marginal odds ratio (mOR): µ1/(1−µ1)
µ0/(1−µ0)

• conditional odds ratio (cOR): regression parameter from model

logitP(Y = 1 | X = x ,W = w ,Z = z) =β0 + β1x + β2z + β3w
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Choosing an estimand
Viewing the cOR as resulting from a working model allows us to define
two levels of estimand.

Oracle estimand:
• a function of only the data-generating distribution

• cOR is only an oracle estimand if the working model is identical to
the true data-generating model

• natural target of many causal inference methods

Census estimand:
• a function of the data-generating distribution and working regression

model

• cOR always defined at this level

• natural target of many parametric regression methods

• missing-data methods often benchmarked against this estimand

Importantly, oracle and census estimands are only equal if the working
model corresponds exactly to the data-generating model.
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Common approaches to handle missing confounders
Complete case analysis (CC):
• drop individuals with missing information for some variables.
• fit working regression model (targeting census estimand)
• But this can lead to bias and inefficiency!

Confounded approach (CNFD):
• Drop variables prone to missingness
• fit regression model
• But this can lead to confounder bias! (for the census estimand)

Horvitz-Thompson inverse probability weighted estimator (IPW):
• Estimate π
• fit weighted working regression model among complete cases

(targeting census estimand)
• Typically unbiased, but can be inefficient

Multiple imputation (MI):
• Use partial information to impute missing data
• fit working regression model (targeting census estimand)
• Under missing at random (MAR), can avoid bias and inefficiency
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Generalized raking: improving IPW

Procedure: (Deville and Särndal, 1992)

1. calculate IPW weights

2. calibrate IPW weights using phase 1 variables
• optimal calibration: based on expected value of influence function

given observed data (Breslow et al., 2009)
• in practice, can be based on working model

3. fit weighted outcome regression using calibrated weights

Generalized raking (GR):
• is equivalent to optimal augmented IPW estimator if using optimal

calibration variable (Lumley et al., 2011)

• can be easily implemented in R package survey

• is doubly-robust to misspecification of outcome model or
missing-data model
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Targeted maximum likelihood estimation (TMLE)

Developed to target oracle marginal quantities (e.g., mRD) under
less-restrictive assumptions. (van der Laan and Rubin, 2006)

Requirements:

1. Estimating Q, g , π (Rose and van der Laan, 2011)

2. Use maximum likelihood to solve score equation involving efficient
influence function

Appealing properties:

1. Can use machine learning for nuisance parameters (e.g., super
learner (van der Laan et al., 2007))

2. Doubly-robust for outcome regression and propensity score

Implemented in the R package twoStageDesignTMLE.
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Robustness
Suppose working outcome model Q, missing-data model π, imputation
model f , treatment assignment model g

Analysis
approach

Required models
for estimation

Correct
specification for
consistent
estimation of
oracle parameters

Correct
specification for
consistent
estimation of
census parameters

IPW Q and π Q and π π or (Q and CD-
MCAR)

MI Q and f Q and f f
GR Q and π Q or π π or Q
TMLE Q, g and

π
(Q or g) and π π or [(Q or g)

and CD-MCAR]

CD-MCAR: covariate-dependent missing completely at random, where
missing data can depend only on always-observed covariates, not outcomes
(Seaman et al., 2013)
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Numerical experiments

We consider both synthetic and plasmode experiments.

Synthetic:
• specify all data-generating models

• investigate performance of estimators in range of settings

Plasmode:
• data-generating models based on KPWA cohort

• bootstrap sampling of covariates

• investigate performance of estimators in a more realistic setting
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Synthetic data generation

Common parameters:
• Cohort size n = 10000

• 2500 Monte-Carlo replications

Base case scenario:
• simple data-generating models for outcome, treatment, missingness

• roughly 40% missingness in confounders

• roughly 12% outcome incidence

• in this case, oracle estimand = census estimand

Variations:
• Complex outcome or missingness model (interactions, nonlinear

terms)

• Increased missingness (80%)

• Lower outcome incidence (5%)
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Estimators
1. Oracle model: true outcome model fit with complete data for entire

cohort (benchmark for oracle estimand)

2. Census model: working outcome model fit with complete data for
entire cohort (benchmark for census estimand)

3. Confounded model (CNFD): fit working model dropping variables
with missing data

4. Complete-case (CC): fit working model dropping observations with
missing data

5. Inverse probability weighting (IPW): fit working model with weights
obtained using logistic regression

6. Generalized raking (GR): fit working model with calibrated weights

7. MICE: fit working model after multiple imputation via chained
equations (MICE)

8. MI-RF: fit working model after MI using random forests

9. TMLE:
• TMLE-M: use super learner to estimate π, but working models for Q

and g
• TMLE-MTO: use super learner to estimate π, Q, g
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Synthetic base case simulation results: census cOR
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Synthetic base case simulation results: oracle cOR
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80% missing-data results: census cOR
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80% missing-data, 5% outcome results: census cOR
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Plasmode data generation

Data-generating models:
• π: tree or glm fit to entire cohort (n = 112770) to predict

observation of PHQ-9

• g : tree or glm fit to complete cohort (n = 50337) to predict
assignment to psychotherapy vs antidepressant medication

• Q: tree or glm fit to complete cohort

Other confounders: sex, age, Charlson comorbidity index, anxiety
diagnosis in past year, self-harm in prior 6 months, psychiatric
hospitalization in prior 5 years, alcohol use disorder in past year
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Plasmode simulation results: census mRD

−0.01

0.00

0.01

BNMK−C CC CNFD IPW GR MICE MI−RF T−M T−MTO

Bi
as

0.000

0.002

0.004

0.006

0.008

BNMK−C CC CNFD IPW GR MICE MI−RF T−M T−MTO

rR
M

SE

0.20

0.40

0.60

0.80

0.95
1.00

BNMK−C CC CNFD IPW GR MICE MI−RF T−M T−MTO

No
m

in
al

 c
ov

er
ag

e

0.20

0.40

0.60

0.80

0.95
1.00

BNMK−C CC CNFD IPW GR MICE MI−RF T−M T−MTO

O
ra

cle
 c

ov
er

ag
e

GLM, 1−Year Self−Harm

Tree, 1−Year Self−Harm

GLM, 5−Year Self−Harm/Hospitalization

Tree, 5−Year Self−Harm/Hospitalization 23



Plasmode simulation results: oracle mRD
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Conclusions

In our simulations, we observed:
• the importance of first choosing a target estimand, then an

estimation procedure

• confounded and complete-case methods performed poorly

• at least one variant of MI often performed well, but no one variant
performed well uniformly

• generalized raking among the best in the majority of settings

• TMLE often had small bias but larger variance

For more, check out:
• the paper, https://arxiv.org/abs/2412.15012

• the repo, https:
//github.com/PamelaShaw/Missing-Confounders-Methods
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