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Sentinel Initiative - https://www.Sentinelinitiative.org/

“The U.S. Food and Drug Administration (FDA) leads the Sentinel 
Initiative. FDA created the Sentinel Initiative to meet a mandate by 
Congress in the FDA Amendments Act of 2007. Through the Sentinel 
Initiative, FDA aims to develop new ways to assess the safety of 
approved medical products including drugs, vaccines, and medical 
devices.”
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Subset Calibration Methods Project
The aim of this project was to evaluate and compare methods to address missing data 
in settings with high levels of missing confounder data
• Estimators for two-phase data were of interest

o Survey Calibration methods
o Two stage Targeted Maximum Likelihood Estimation (TMLE)

• Comparison with more traditional methods to evaluate missing data was also of interest
o Inverse-probability weighting (IPW)
o Multiple imputation 
o Naïve approaches 

• Practical approaches currently available in statistical software were a focus
• Project built on the learnings of previous Sentinel Project that compared imputation methods to 

handle  missing confounder data
 Weberpals J, Raman SR, Shaw PA, Lee H, Russo M, Hammill BG, Toh D, Connolly JG, Dandreo KJ, Tian F, Liu 

W, Li J, Hernández-Muñoz JJ, Glynn RJ, Desai RJ. A Principled Approach to Characterize and Analyze Partially 
Observed Confounder Data From Electronic Health Records: A Plasmode Simulation Study. Clinical 
Epidemiology, 2024; 16 329–343.
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Previous Work of Weberpals et al 2024
Approaches to Handling Partially Observed Confounder Data from Electronic Health 
Records (EHR) in Non-Randomized Studies of Medication Outcomes 

Overall Goal: Develop standardized “toolkits” that can be readily implemented in EHRs to 
diagnose and, when assumptions permit, address missingness in confounding variables in 
pharmacoepidemiologic analyses

Key component of this work: Methods comparison
o Investigated: IPW, complete case, missingness indicator, single imputation (missForest), 

MICE (default), MICE (CART), MICE-RF (random forest)
o Considered 10-50% missingness imputation procedures 
o Considered different missingness mechanisms: MCAR, MAR, MNAR
o Found MICE (default) and MICE-RF (random forest) had best overall performance
o Developed SDMI R package to help diagnose type of missing data (Weberpals et al JAMIA open 2024)
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Gaps in previous work: lack of doubly-robust methods
Building on this work, we sought to:

• Evaluate how the best performing imputation approaches from Weberpals et al 2024, MICE 
and MICE-RF, compare to survey calibration and TMLE-based super learner 

- Hypothesis 1: there would be advantages in some settings to survey calibration because it 
does not need to correctly model outcome in subjects with incomplete data

- Hypothesis 2: there would be advantages to TMLE-super learner approaches because of 
the flexible (e.g. non-parametric) approach for estimation

• Consider performance of methods under higher levels of missingness: 40-80%

• Investigate the practicality of implementing survey calibration and TMLE
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Project Goals

1. Perform a numerical simulation study to assess relative performance of methods for 
handling high percentage of missingness in confounders

o Use synthetic data to create different scenarios that challenge the methods
o Use plasmode simulation to create a realistic simulation based on real data
o Ultimate aim: provide guidance on choice of analytical approach

2. Disseminate knowledge of the survey calibration and TMLE super learner as methods for 
handling missing data 

3.   Provide vignettes and software to allow easy adoption of methods by members of Sentinel 
and the broader research community
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• When evaluating treatments for safety and rare outcomes, it is often necessary to merge 
multiple, large databases 
o Improves statistical power 
o Create a more generalizable cohort

• A commonly encountered problem in pharmacoepidemiologic settings: important confounders 
may be missing in a high % of individuals
o In Sentinel, where data from administrative claims and EHR data are combined,  certain 

clinical data (e.g. vital signs) are not available on individuals with claims data only

o More generally, there are many settings in observational and randomized cohorts where certain 
covariates may only be obtained on a subset either due to invasiveness (e.g. biopsy) or expense 
(novel biomarkers) of assays

Setting of Interest
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KPWA antidepressant Initiator (ADI) Cohort

• Kaiser Permanente Washington (KPWA) is an integrated health care system in Pacific 
Northwest that provides care and health insurance to over 700,000 members

• 112,770 KPWA adults aged 13+ years, initiating antidepressant medication or psychotherapy 
from January 1, 2008 to December 31 2018 (n=112,770)
oNo antidepressant fills or psychotherapy in the prior year

• Plasmode data set: 50,337 individuals with complete data on the Patient Health 
Questionnaire (PHQ-9)

• Outcome: Composite outcome of self-harm (fatal or non-fatal) or psychiatric hospitalization 
within 5 years following treatment initiation n=5193, (10.3%) 

• Missingness: 55% missing the PHQ-9 
o Missing data includes key confounders: depression severity and history of prior self-harm
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Phase 1: Measure Xi, Zi, Yi  for i = 1, … , N subjects (data always observed)
Xi– binary treatment
Zi– Confounders 
Yi – binary outcome

Phase 2:  Variables only available on a subset (Wi)
Wi – Additional confounders available for some individuals

Phase 2 study design: Individual selected into phase 2 with sampling probability πi

Missing data setting: πi are not known and need to be estimated

Missing data: A two-phase design  
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Complete Case Analysis (CC)- Drop individuals with missing information for some variables
Problem #1: dropping observations with partial information can lead to inefficiency
Problem #2: dropping observations with partial information can lead to bias

Confounded Approach (CNFD) – Drop variables prone to missingness
Problem #3: dropping variables can lead to confounder bias

IPW – Horwitz Thompson inverse probability weighted estimator
Problem #1: dropping observations with partial information can lead to inefficiency 

Multiple Imputation (MI) – Use partial information to impute missing data and analyze all 
individuals with any data
Can avoid problems 1,2,3 under MAR ( Little et al 2022)

Common approaches to handling missing confounders
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• IPW is only using information from the complete case data
• Ignoring the partially observed data can result in inefficient estimators (wide CI)

• Multiple imputation (MI) uses the partially observed data to impute missing information and 
incorporate all individuals into final analysis 
• Weberpals et al. Clin Epi 2024 demonstrated MI estimators more efficient (narrower CI)

• Han et al SIM 2021 demonstrated that the efficiency of the MI comes at a cost
o Efficiency that you gain is robustness that you lose (Lumley 2017 )

• Survey calibration, or generalized raking (GR) is another way to bring in information 
from individuals with partially observed data
• GR estimators will be more efficient than IPW if there is at least some “linear correlation” between 

observed data and unobserved data
• Unlike MI, GR does not rely on getting outcome model correct in unobserved individuals

Improving IPW
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Survey Calibration, aka Generalized raking (GR)
GR is a weighted complete case estimator using calibrated IPW weights 
• First step: Calculate the IPW weights (1/ πi)
• Second step: weights are adjusted (calibrated) using “phase 1” variables observed on everyone

o Calibration variables can be imputed variables using a working model
o If working model is wrong, raking won’t gain efficiency over IPW, but won’t introduce bias

• Third step: Fit weighted outcome regression model using calibrated weights

Some observations
• Ideal raking estimator is asymptotically equivalent to optimal AIPW estimator (Lumley et al 

2011)
o Ideal raking leverages maximal information from the ‘’phase 1” data

• GR targets estimand/estimate that would have been fit if there was no missing data
• Raking can be readily implemented using the survey package in R (Lumley 2011) 
 See example code: https://github.com/PamelaShaw/Missing-Confounders-Methods/

https://github.com/PamelaShaw/Missing-Confounders-Methods/blob/main/Marginal%20EstimationVignette_20240403.pdf
https://github.com/PamelaShaw/Missing-Confounders-Methods/blob/main/Marginal%20EstimationVignette_20240403.pdf
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GR: Technical Bits (Deville and Särndal 1992)

Under mild regularity conditions, know

Var 𝛽̂𝛽𝐺𝐺𝐺𝐺 ≈ 1 − 𝜌𝜌2 Var 𝛽̂𝛽𝐼𝐼𝐼𝐼𝐼𝐼 , where 𝜌𝜌 = cor(ℎ𝑖𝑖,𝐴𝐴𝑖𝑖) and

hi is the efficient influence function of the target parameter in the population model
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Constructing Efficient Raking (Calibration) Variables for 
Regression Coefficients
• We know the ideal raking variable is the expected value of the influence function given the 

observed data (Breslow et al 2009)
• Han et al 2021 showed a practical way to estimate the optimal raking variable is to 

o Multiply impute the missing data for the whole cohort
o Fit the target working model on the population for each imputed dataset and obtain the 

influence functions for each model parameter
o Average the influence functions across imputed datasets

• GR Approach: calibrate IPW weights using the average imputed influence functions for each of 
the regression coefficients 
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TMLE Superlearner 
• Targeted Maximum likelihood estimation (TMLE) is a semiparametric estimation technique that targets a 

parameter of interest 
• Contrary to maximum likelihood estimation (MLE) which solves an optimization problem based on all 

parameters,   TMLE aims to reduce bias and variance for parameter of interest at expense of other 
parameters (nuisance parameters)

• Typically implemented with a Super Learner  (data adaptive ensemble learner) for key quantities
• Learning by fitting multiple models to the data
• Incorporates the flexibility of machine learning, while allowing for statistical inference
• Will be maximally efficient when the model and nuisance parameters are correctly specified

• Rose and van der Laan (2011) developed a TMLE approach to handle two-phase designs
• Machine learning principles can be used to flexibly model missing data

Key references: van der Laan and Rubin 2006; van der Laan et al 2007; Rose and van der Laan 2011, Gruber 
and van der Laan 2009
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TMLE targets the causal estimand
Define 𝜇𝜇𝑥𝑥 = P(Y=1 | X=x)

In our point treatment setting, interest is in one of the following estimands:

Marginal risk difference (mRD):     𝜇𝜇1 − 𝜇𝜇0 
Marginal relative risk (mRR): 𝜇𝜇1/𝜇𝜇0
Marginal odds ratio (mOR): 𝜇𝜇1/(1 −𝜇𝜇1)

𝜇𝜇0/(1 −𝜇𝜇0)

Our TMLEs will estimate the treatment effect by estimating:  E[P(Y=1 | X=x, Z, W) ]
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TMLE for Missingness Mechanism (TMLE-M)
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TMLE for Missing/Treatment/Outcome (TMLE-MTO)
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Numerical Study Part 1: Synthetic Data
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Base Case Simulation Set up
• Cohort of N= 10,000 generated
• 2500 Monte Carlo simulation iterations
• Roughly 40% missingness in confounders
• Outcome ~12% incidence
• Compare performance of estimation methods for 4 estimands

o Conditional odds ratio (cOR)- i.e., canonical parameter from logistic regression model
o Marginal risk difference (mRD) 
o Marginal risk ratio (mRR)
o Marginal odds ratio (mOR)

• Consider the mean bias, median bias, ESE, MAD, RMSE, Oracle coverage, Nominal coverage
• Base Scenario: Simple data generating models (DGMs) for outcome, propensity and missingness
• Variations: Complex outcome and missingness models, increased missingness (80%), lower 

outcome incidence (5%)
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Estimators Under Study
1. Oracle model – true outcome model fit with complete data for whole cohort (unobserved, 

Benchmark model for Oracle estimand)
2. Population model –working outcome model fit with complete data for whole cohort 

(unobserved- Benchmark model for Census estimand)
3. Confounded model (CFND)- working model dropping confounders with missing data
4. Complete case (CC) - working model dropping observations with missing data
5. Inverse Probability Weighting (IPW) – working model using CC data and glm-derived IP 

weights
6. Generalized Raking (GR) – working model using CC data and calibrated weights
7. MICE  –  working model using Multiple Imputation (MI) with chained equations (MICE)
8. MI-RF  –  working model using MI with random forest 
9. MI-XGB – working model with MI with gradient boosted trees (XGBoost)
10.TMLE-M – working model using CC data and super learner-derived IPW weights
11. TMLE -MTO  – super learner-derived IP weights, propensity score (PS) weights and outcome 

model
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Leveling the Playing Ground (1)
• Different methods target different estimands, so important to study both
• Conditional vs marginal estimands:
oConditional estimands (e.g. cOR) are commonly a target of inference, typically 

coefficient from a regression model
oMarginal estimands (e.g. mRD) are commonly the focus of causal inference

• Census vs Oracle estimands:
oCensus estimand is a traditional target of missing data methods. Benchmark model – 

the working model fit to the unobserved full cohort data
oOracle estimand is a scientific ideal, capturing “true” DGM. A fully non-parametric 

model generally necessary if targeting the oracle estimand
• Common implementations:
oCC, IPW, MI, GR- targeting census, conditional estimand
oTMLE-MTO- targeting oracle, marginal estimand
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Leveling the Playing Ground (2)

• Census estimand specified by working model, so simpler DGM will make it easier to get 
this right

• Oracle estimand- specified by unknown true DGM, need flexibility to get this right-so 
more complex DGM will favor more flexible methods (e.g. super learners)

Features of Numerical Simulation Studies
• In Synthetic simulations, we considered both complex and simple DGM
• In Plasmode simulations, we fit very complex DGM to the real data
• Plasmode simulation had complex relationships between covariates, but synthetic 

simulations had stronger treatment effects and stronger confounding mechanisms, and 
perhaps stronger patterns of non-linearity than fitted plasmode models
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Data Generation Mechanism (DGM) Scenarios 

Scenarios Missingness Model Treatment Model Outcome Model Implications for 
analysis model

Simple
Parametric models
No unmeasured 
confounders in 
treatment model

1.0  Logistic, simple 
MAR-XZ

1.1 Logistic, simple 
MAR-XZY

linear logistic model
• no unobserved 

confounding

Linear logistic model 

1.0- null effect

1.1- cOR=1.5

Will allow for correct 
parametric model 
specification

Complex MAR: Interactions and 
non-linear terms

MNAR- value

MNAR- unobserved 
variable

N/A Interactions and 
non-linear terms

MNAR Scenario: 
unobserved variable

Analysis model simpler 
than DGM

Plasmode Complex

Tree-based and glm-
based implementations 
for DGM. 

Complex

Tree-based and glm-
based implementations 
for DGM. 

Complex

Tree-based and glm-
based implementations 
for DGM. 

Analysis model simpler 
glm than DGM
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Analysis Choices

Missingness
Methods

• Subset 
calibration

• MI
• TMLE 

Superlearner

Treatment

• Confounder 
Adjustment

             

Outcome

• Simple 
logistic 
working  
model
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Simple Scenario: Outcome and Treatment DGM
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Complex Outcome Model : Nonlinearity + Interactions
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Base Case – MAR, Census clogOR

Simple MAR, Simple Outcome

Complex MAR, Simple Outcome

Simple MAR, Complex Outcome

Complex MAR, Complex Outcome

Remarks:
Estimators achieving close to 95% coverage in all 4 
scenarios:  GR, MI-RF, T-M, T-MTO
Most efficient among these: MI-RF
Mice doing well when outcome model is simple



|   32

Base Case – MAR, Oracle clogOR

Simple MAR, Simple Outcome

Complex MAR, Simple Outcome

Simple MAR, Complex Outcome

Complex MAR, Complex Outcome

Remarks:
GR still doing well. MICE now doing better
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Base Case with 80% missingness– MAR, Census clogOR

Simple MAR, Simple Outcome

Complex MAR, Simple Outcome

Simple MAR, Complex Outcome

Complex MAR, Complex Outcome

Remarks:
Similar to case with 40% missingness, except MI-RF 
not doing well any longer
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80% missingness + rare outcome: MAR, Census clogOR

Simple MAR, Simple Outcome

Complex MAR, Simple Outcome

Simple MAR, Complex Outcome

Complex MAR, Complex Outcome

Remarks:
GR still does well, some SE inflation
Both MI and MI-RF fail to achieve 95% coverage with 
complex outcome.  MI-RF doing worse
TMLE having some coverage issues, won't do well 
under complex MAR
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Oracle vs Nominal Coverage

Simple MAR, Simple Outcome

Complex MAR, Simple Outcome

Simple MAR, Complex Outcome

Complex MAR, Complex Outcome

Remarks:
Can see some SE estimation 
problems for MICE, MI-RF, T-M, T-
MTO

Can see double-robustness of TMLE 
when missingness is correct
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Base Case – MAR, Oracle mRD

Simple MAR, Simple Outcome

Complex MAR, Simple Outcome

Simple MAR, Complex Outcome

Complex MAR, Complex Outcome

Remark:
GR achieving close to 95% coverage in all 4 scenarios:
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MNAR – 12% incidence, 40% missing,
Census clogOR

MNAR unobserved, simple Outcome 

MNAR value, Correct simple Outcome

MNAR unobserved, simple Outcome +unobserved

MNAR value, Complex Outcome

Remark:
TMLE had the lowest bias and best overall coverage
GR/MI doing well for MNAR unobserved

For oracle estimators TMLE also showing good 
efficiency (data not shown)
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Takeaways for Raking vs MI vs TMLE from Synthetic 
Simulations -MAR

Simple MAR, all estimands
• Raking and MI did well and similarly for simple (correctly specified) outcome
• Raking outperformed MI for complex (incorrectly specified) outcome
• TMLE-M, TMLE-MTO did well with respect to bias, but not efficiency

Complex MAR, all estimands
• Raking did well for census estimands and all estimands with simple (correct) outcome model
• Raking still does well for census estimands and cOR, even with complex (incorrect) outcome
• Bias and SE estimation issues for MI with complex (incorrectly specified) outcome model
• TMLE outperformed other estimators for Oracle marginal estimands in terms of coverage and 

bias. Efficiency good for larger sample size and less missing data.
• A few instances of under coverage for TMLE
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Takeaways for Raking vs MI vs TMLE from Synthetic 
Simulations -MNAR

• Raking still does well for several settings for census estimand (in terms of efficiency and 
coverage)

• TMLE does well, with notable resilience , for case of the oracle marginal estimands
• MI performance was not consistent in terms of which imputation algorithm did 

well/sufficiently
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A Few Qualifiers
In complex settings studied, conclusions are specific to the flavor of the complex model implemented.

• e.g., raking did well even for Oracle estimand under misspecification. But for more extreme 
misspecification, might not expect that

"Happy families are all alike; every unhappy family is unhappy in its own way”     

-Tolstoy, Anna Karenina



|   41

Numerical Study Part 2: Plasmode Data
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Plasmode Simulation
• Plasmode simulation is a type of numerical simulation that generates the covariate distribution 

by resampling real data (Franklin et al 2014)
• The specific association of interest is then injected into the data using statistical models
• In our setting we will create 1000 bootstrap samples of the KPWA ADI cohort data
• Still need 3 DGM

• Missingness model
• Treatment model
• Outcome model

• We will compare the same estimation methods as done for the synthetic data
• XGBoost did not perform that well so was dropped

• In a separate paper, we show for typical causal estimands need to generate treatment from a 
model and not sample with covariates  (Shaw et al. 202X, https://arxiv.org/abs/2504.11740)
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Plasmode Data Generating Mechanisms (DGMs)
1. Treatment data generating model

• Antidepressant medication or psychotherapy
2. Outcome data generating model

• Self-harm/Psychiatric hospitalization within 5 years of treatment initiation
3. Missing data generating model

• PHQ-9 measurement (yes/no)

Data generating models estimated from KPWA ADI Cohort

• Treatment and outcome model fit to 50,337 with complete data

• Missing data model considers full population of 112,770 individuals with 50,337 (45%) 
having complete data

For each type of generating model use ADI cohort to estimate:

1. Parametric model (e.g. logistic regression) with interactions

2. Tree-based model (allowing for complex interactions)

DGM more complex and had more variables than analysis models
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Confounders
1. Sex (mostly represents sex assigned at birth)

2. Age in years at time of index visit (18-24, 25-34, 35-44, 45-54, 55-64, 65+ years)

3. Charlson comorbidity index (0, 1, 2, 3+)

4. Anxiety diagnosis in the past year

5. Self-harm in the prior 6 months

6. Psychiatric hospitalization in the prior 5 years

7. Alcohol use disorder in the past year

8. 9 item Patient Health Questionnaire (PHQ-9)  
• Sum of first 8 items to summarize depressive symptoms (PHQ-8)

• 9th item measure of suicidal ideation
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Covariates Included in the DGMs for Outcome, 
Treatment, and Missingness
• Treatment exposure + 8 confounders 

• Interactions:

o Categorical age and sex

o Prior self-harm and sex 

o Prior self-harm and categorical age

o PHQ 9th item and sex

o PHQ 9th item and prior self-harm
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KPWA ADI Cohort (N=50,337)
% (n)

* At time of initiation
† In prior 6 months
‡ In prior 12 months
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Plasmode results, Oracle mRD 

GLM 1-year self-harm

Tree 1-year self-harm

GLM 5-year self-
harm/hospitalization
Tree 5-year self-
harm/hospitalization

Remarks: 
For 5-year outcome: MICE and GR behaved 
similarly and maintained best performance across all 
estimands

For 1-year outcome: TMLE-MTO maintained best 
overall coverage. Most efficient estimator that 
maintained nominal coverage for Oracle mRD and tree 
DGM
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Plasmode results, Census mRD 

GLM 1-year self-harm

Tree 1-year self-harm

GLM 5-year self-
harm/hospitalization
Tree 5-year self-
harm/hospitalization
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Conclusions
• Survey calibration/Generalized raking are rarely performed in biomedical settings, but were observed to have the 

best overall performance in the majority of settings
o These estimators are practical to implement in standard software

• TMLE did well with respect to bias, but only did well with respect to efficiency in certain settings
• Was efficient for oracle estimand mRD when there were  complex DGMs and larger sample size/event rates

• One strategy may be to perform TMLE and raking, gaining confidence when estimates agree
• When estimates don’t agree, it may be missingness model is misspecified, or oracle and census estimands 

are different
• MI often did well with respect to efficiency but no one algorithm did well across all the settings
• Confounded and complete case approaches were generally poor performing methods
• There were a few edge cases (MNAR) where complete case and IPW did well (discussed by Little et al 2022, Lee et 

al 2023, and others)
• Our numerical experiments highlight the importance of first choosing a target estimand and then determining an 

estimation procedure.
• Plasmode simulation studies are useful in guiding methods selection, but need to consider DGMs that don’t 

uniformly favor one method 
• Scenarios studied are comprehensive, but not exhaustive
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Resources
https://github.com/PamelaShaw/Missing-Confounders-Methods/

• Provide R code that implemented these methods
• Provide vignettes that explain in detail the general principles and steps to applying these 

methods
• Contact pamela.a.shaw@kp.org for further information

Manuscript on Arxiv
https://arxiv.org/abs/2412.15012

https://github.com/PamelaShaw/Missing-Confounders-Methods/
mailto:pamela.a.shaw@kp.org
https://arxiv.org/abs/2412.15012
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Thank you!
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Little RJ, Carpenter JR, Lee KJ. A comparison of three popular methods for handling missing data: complete-case analysis, 
inverse probability weighting, and multiple imputation. Sociological Methods & Research. 2022 Aug 5:00491241221113873.

- Discusses what to expect under MAR and MNAR, highlighting when each method may be expected to do well

- Some interesting special (edge?) cases where IPW or CC can beat MI 

Weberpals J et al A Principled Approach to Characterize and Analyze Partially Observed Confounder Data from Electronic 
Health Records. Clinical Epidemiology. 2024 Dec 31:329-43.

- CI3 paper that looked at methods performance under MAR and MNAR

- In separate paper, Weberpals et al saw high dimensional auxiliary data approach offered marginal improvements

Weberpals J, et al. smdi: an R package to perform structural missing data investigations on partially observed confounders 
in real-world evidence studies. JAMIA open. 2024 Apr 1;7(1):ooae008. 

- Software paper describing how smdi package can be used to investigate patterns in missing data

Lee, Katherine J., et al. "Assumptions and analysis planning in studies with missing data in multiple variables: moving 
beyond the MCAR/MAR/MNAR classification." International Journal of Epidemiology 52.4 (2023): 1268-1275.

- Outlines that MAR and MNAR can be unhelpful distinctions and need to think about causal diagrams

Useful recent papers
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Estimating Marginal Estimands
TMLE-based methods provide marginal estimates by default

Other approaches:

1. Fit logistic regression model, obtain predicted probabilities �𝑝𝑝𝑖𝑖,𝑥𝑥 = �𝑃𝑃 𝑌𝑌𝑖𝑖 = 1 𝑋𝑋𝑖𝑖 = 𝑥𝑥,𝑊𝑊𝑖𝑖, 𝑍𝑍𝑖𝑖) using 
observed (𝑊𝑊𝑖𝑖, 𝑍𝑍𝑖𝑖) and 𝑋𝑋𝑖𝑖 = 𝑥𝑥

2. Obtain weights 𝑤𝑤𝑖𝑖  to generalize to the full population

- For complete-case methods and MI-based methods, 𝑤𝑤𝑖𝑖 = 1 for 𝑖𝑖 = 1, … , 𝑛𝑛

- For IPW, 𝑤𝑤𝑖𝑖 = 1
�ℎ𝑖𝑖

, where �ℎ𝑖𝑖 = �𝑃𝑃 Δ𝑖𝑖 = 1 𝑋𝑋𝑖𝑖 = 𝑥𝑥, 𝑌𝑌𝑖𝑖 = 𝑦𝑦, 𝑍𝑍𝑖𝑖 = 𝑧𝑧) (Δ is missing indicator)

- For raking, 𝑤𝑤𝑖𝑖 = calibrated IPW weights (from raking procedure)

3. Obtain estimators �𝜇𝜇𝑥𝑥 = 𝑛𝑛−1 ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑝̂𝑝𝑖𝑖,𝑥𝑥 
4. Estimate marginal parameters:

     �𝑚𝑚𝑚𝑚𝑚𝑚 = �𝜇𝜇1
�𝜇𝜇0

     �𝑚𝑚𝑚𝑚𝑚𝑚 = �𝜇𝜇1  − �𝜇𝜇0
     �𝑚𝑚𝑚𝑚𝑚𝑚 = �𝜇𝜇1/(1 −�𝜇𝜇1)

�𝜇𝜇0/(1 −�𝜇𝜇0)
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Model assumptions required for consistency 
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