Details
Description
- Minimizing confounding is a key challenge to ensuring the fidelity of observational assessments of the real-world safety and effectiveness of medical products. Significant advances have been made in leveraging data-driven machine learning approaches to efficiently reduce potential confounding. This webinar will focus on super learning and targeted maximum likelihood estimation, in particular, as solutions to reducing bias in observational studies of electronic health record data.
Target Audience
- Medical informaticists, medical product safety and real world evidence researchers and regulators
Materials
Event Materials
View a recording of the webinar here.
Additional Information
Host
Sentinel Innovation Center
Contributors
Presenter(s)
Mark van der Laan, PhD